# **SIMATIC FAILSAFE 4.0** Predictive Failsafe: Improving the Safety of **Industrial Environments**



#### Amer Kajmakovic

Pro2Future GmbH<sup>1</sup>, TU Graz: Institute for Technical Informatics<sup>2</sup> <sup>1</sup>Standort Graz: Inffeldgasse 25F/1.OG, 8010 Graz <sup>2</sup> Inffeldgasse 16, Graz, Austria

### MOTIVATION

- Advanced control and monitoring systems. Improve Safety of people and of the
- A huge amount of data (safety-related) is generated.
- People and machines collaborate in the same dynamic working space and without separation.

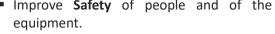
## APPROACH

Identify data sources which may contribute to maintainability, availability and safety!

Apply advanced analytics to safety related data (data analysis, predictive features...)

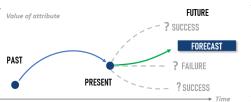
## SYSTEM ARCHITECTURE

#### Safety-related data sources:


- Control Data
- Hardware & Software metadata
- Product quality management
- Self-diagnostic data
- Configuration data
- People's condition & behavior
- 3<sup>rd</sup> parties data
- Quality of service parameters •
- L Self-diagnostics test:
  - · Random access memory tests,
  - Temperature and Voltage levels,
  - Timing and synchronization,
  - Communications.

Improve Functional

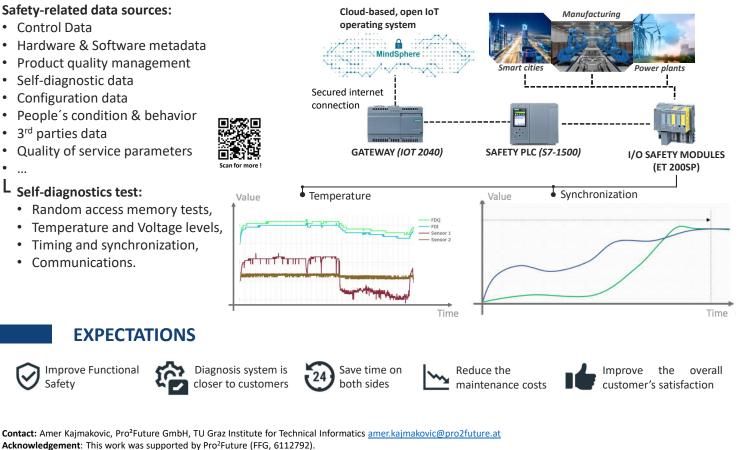
AVI 3


Safety

コスロ



- Adapt the traditional, static, approach to fail-safe operation to the new dynamic environments
- Increase Maintainability and Availability of the systems






JAR

Together with Industrial failsafe applications make up Predictive Failsafe systems.

Predictive Failsafe systems are able to mitigate or prevent failures.



FFG

SFG