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Abstract

Active portfolio management tries to incorporate any source of meaning-
ful information into the asset selection process. In this contribution we
consider qualitative views specified as total orders of the expected asset re-
turns and discuss two different approaches for incorporating this input in
a mean-variance portfolio optimization model. In the robust optimization
approach we first compute a posterior expectation of asset returns for every
given total order by an extension of the Black-Litterman (BL) framework.
Then these expected asset returns are considered as possible input scenar-
ios for robust optimization variants of the mean-variance portfolio model
(max-min robustness, min regret robustness and soft robustness). In the or-
der aggregation approach rules from social choice theory (Borda, Footrule,
Copeland, Best-of-k and MC4) are used to aggregate the total order in a
single “consensus total order”. Then expected asset returns are computed
for this “consensus total order” by the extended BL framework mentioned
above. Finally, these expectations are used as an input of the classical mean-
variance optimization. Using data from EUROSTOXX 50 and S&P 100 we
empirically compare the success of the two approaches in the context of port-
folio performance analysis and observe that in general aggregating orders by
social choice methods outperforms robust optimization based methods for
both data sets.
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1. Introduction

In this paper, we focus on the Black-Litterman model (hereafter BL)
which derives an optimal portfolio based on two sets of information: backward-
looking market equilibrium and forward-looking expert views. We extend
the original model in three ways. First, instead of requiring investors to
estimate the parameters of the distribution of future asset returns, we allow
for views that simply rank these assets according to their expected returns.
Second, rather than considering the view of only one expert, we allow for
multiple experts to input their separate views on (possibly, but not neces-
sarily) different assets. Third, we propose alternative methods from robust
optimization and social choice theory to incorporate these different views
into portfolio optimization. To the best of our knowledge this is the first
time that aggregation methods from social choice are incorporated into the
world of asset allocation. In addition to theoretical explanations, we com-
pare the performance of the portfolios built upon the different approaches
using historical stock market data. In this way we can determine the best
of the approaches studied.

The relevance of incorporating multiple exogenous insights, such as port-
folio managers’ judgments, into formal models of portfolio management was
already highlighted in Harry Markowitz’s seminal work on portfolio selec-
tion, commonly referred to as mean-variance (MV) optimization or Modern
Portfolio Theory (MPT):

”Various types of information concerning securities can be used
as the raw material of a portfolio analysis. One source of infor-
mation is the past performance of individual securities. A second
source of information is the beliefs of one or more security ana-
lysts concerning future performances.” (Markowitz (1959), p. 3)

MPT (Markowitz (1952)) is undoubtedly the most important quantita-
tive framework for portfolio optimization. While the theory is intuitive and
coherent, reputation and implementation have suffered among practitioners
due to numerous difficulties. In particular, to construct alternative portfo-
lios with different combinations of risk and return, with one portfolio being
the optimal (or efficient) one, investors must provide estimates of expected
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returns, volatilities and correlations for all securities in the investment uni-
verse under consideration. However, early theory remains vague on how to
specifically estimate these inputs to the investment process. Traditionally,
the use of historical market data has been suggested. Unfortunately, us-
ing historical distributions to estimate expected returns and the covariance
matrix is prone to measurement errors, which can lead to significant discrep-
ancies between ex-ante and ex-post optimal portfolio weights for a variety
of reasons. Empirical evidence of the poor out-of-sample performance of the
classical MV optimization model is provided, among others, by Michaud
(1989), Best and Grauer (1991), and Chopra and Ziemba (1993).

To mitigate the adverse effects of neglecting uncertainty in the inputs and
solving the portfolio optimization problem in the original MV framework as
a deterministic problem, several approaches have been taken in the literature
(for a concise overview, we refer to Kolm et al. (2014)). Some of these ap-
proaches focus on modifying the constraints and/or the goal objective func-
tion, e.g. by imposing restrictions on portfolio weights (e.g., Michaud (1989),
Levy and Levy (2014)) and incorporating higher moments and tail-risk mea-
sures (e.g., Harvey et al. (2010), Lassance and Vrins (2021)). Other ap-
proaches target appropriate modifications to the input of the portfolio selec-
tion problem including robust optimization methods (e.g., DeMiguel and Nogales
(2009), Huang et al. (2010), Bayesian statistics (e.g., Pastor and Stambaugh
(2000), Bodnar et al. (2022)) and the Black-Litterman model (Black and Litterman
(1991, 1992). The latter provides the framework for our analysis.

The original BL-approach assumes that the “true” expected asset re-
turns µ are both, unknown and random. Allowing for this uncertainty in
estimation, the model starts with equilibrium risk premia as the neutral ref-
erence point (the prior distribution) for expected returns, derived from an
asset pricing model such as the CAPM using reverse optimization. The prior
can be interpreted as the market view on the portfolio optimization process,
since all investors who do not have specific views on expected asset returns
will hold the same optimal portfolio, the market portfolio. In a second step,
Black and Litterman (1991) assume that investors formulate their own indi-
vidual views on (at least some of) the securities in the investment universe.1

These can be views on absolute returns of individual assets (e.g. “the ex-
pected one-year return on security X is 3.5%”) or relative predictions about
the difference in returns between two or more assets (e.g. “security X will

1Note that a view is generally defined as an uncertain statement about the expected
return of one or more securities

3



outperform security Y by 1% over the next 6 months”). As with the prior
distribution for µ, investor individual views are assumed to be stochastic,
with uncertainty inversely proportional to an investor’s confidence in his/her
views.

After separately specifying the prior distribution of expected returns im-
plied by the market equilibrium and an investor’s views on expected asset
returns, the BL-model applies Bayes’ theorem to combine these two sources
of information to derive the posterior distribution of µ. The lower an in-
vestor’s confidence in his/her views, the closer his/her posterior distribution
of expected returns will be to that implied by the market equilibrium. On
the other hand, the more (s)he trusts her own views the more expected re-
turns will tilt away from market equilibrium in the direction of the views.
The vector of expected returns derived from the BL-model (µBL) is obtained
as the conditional expectation of the prior distribution given the investor’s
views. These estimates finally enter the MV portfolio optimization process.

With respect to investor’s views, the traditional BL-model makes two
assumptions. First, views, whether formulated in absolute or relative terms
(see above), are assumed to be metrically scaled variables (we will refer
to such views as quantitative views hereafter). Although this assumption
simplifies the calculation of µBL, it is unlikely that this kind of views will
prevail in practice. Portfolio managers and financial analysts are likely to
feel more comfortable expressing qualitative views, e.g., by simply ranking
their expectations concerning the future performance of individual stocks,
different asset classes, several sectors of the economy, or individual or multi-
ple stock markets in different geographic regions. In this sense Fabozzi et al.
(2007), p. 233, state that “...trading strategies ... rather just provide relative
rankings of securities that are predicted to outperform/underperform other
securities.” Further (p. 234):“Clearly, it is not an easy task to translate
any of these relative views into the inputs required for the modern portfolio
theoretical framework.”

Second, the BL-model and most of its extensions assume that it is in-
dividual views being processed as input. This is in contrast to team-based
portfolio management, which has become very popular in recent years, espe-
cially among institutional investors such as mutual funds (e.g., Patel and Sarkissian
(2017)). In a group such as an investment committee, group members usu-
ally have different opinions and perspectives on the possible future perfor-
mance of individual assets, sectors, or even entire markets. In such a sit-
uation, the team’s decisions inevitably will be compromises between these
different opinions (e.g., Sah and Stiglitz (1986)). Multiple views may also
matter to individual investors. Consider an investor who incorporates the
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views of several financial analysts into his/her portfolio selection process in
addition to his/her own views. In both cases, the assumption that only in-
dividual views are processed to derive the posterior distribution of expected
asset returns is not appropriate. However, considering multiple views im-
mediately raises the question of how to combine these views to derive an
optimal portfolio.

We contribute to the literature dealing with the integration of qualitative
views into portfolio optimization using the parametric BL-framework. Fol-
lowing the argument of Fabozzi et al. (2007) above, we apply an approach
recently proposed by Çela et al. (2021) that translates qualitative views,
expressed as ordering relations between asset returns, into quantitative es-
timates of expected returns. Moreover, we extend Çela et al. (2021) by
allowing multiple qualitative views and applying two different approaches
to incorporate these views into portfolio optimization: the first one (I) is
based on robust optimization and the second one (II) on social choice the-
ory. We are not aware of any work that has applied methods from social
choice to portfolio optimization before.2

In (I), we consider K different ranking orders (e.g., views of K financial
analysts) and apply the approach discussed in Çela et al. (2021) to compute
a vector of estimated returns for each of them. These K (different) vectors
of expected returns are considered as the possible scenarios of expected re-
turns in the MV portfolio optimization model (MVO). We solve three robust
variants of the MVO which are obtained by applying the following concepts
of discrete robustness: max-min robustness, min-max regret robustness, and
soft robustness. Depending on the concept of discrete robustness involved,
we obtain different robust optimization-based methods as representatives of
this “first estimate, then aggregate” approach.

In (II) we follow a completely different approach. Given K views, we first
aggregate them into a single “consensus” ordering by applying some method
from social choice theory (varying among the Borda rule, the Footrule ag-
gregation, the Best-of-k-Algorithm, the Copeland method and the MC4-
Algorithm). We then apply the approach discussed in Çela et al. (2021)

2It should be noted that Simonian (2014) contains a first pointer into the direction of
social choice theory. The paper addresses a specific situation in which each view includes
a set of stochastically related components. The goal is to aggregate the views such that
the components of the aggregated view fulfill the stochastic relation to the greatest extent
possible. The components of the aggregated view are seen in analogy to an allocation
vector in cooperative game theory and a Shapley-value-based heuristic is proposed to
compute them.
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to compute a vector of estimated returns from this single total order. Fi-
nally, we use this vector as input to the classical MVO and compute the
respective optimal portfolio. In summary, in (II), we first aggregate the or-
derings and then generate the expected return estimator. Depending on the
aggregation rule from social choice theory we obtain different social choice-
based methods as representatives of this “first aggregate, then estimate”
approach.

The main advantage of our proposed aggregation methods from (I) and
(II) is that they are purely deterministic, in the sense that they do not
use probabilistic assumptions in the aggregation process itself. This is in
contrast to well known approaches used to aggregate multiple views in port-
folio optimization, such as the classical Black-Litterman approach (BL) in
Black and Litterman (1992), the copula-opinion pooling technique in Meucci
(2006), or the generalized Black-Litterman model in Chen and Lim (2020)3,
all of which consider quantitative views, and the entropy pooling approach
in Meucci (2008), which also treats qualitative views. All these approaches
(implicitly) assume a stochastic dependence structure among the different
views. Essentially, this is required because in these approaches aggrega-
tion is an integral part of the estimation process and the latter is based on
distributional assumptions. The proposed approaches (I) and (II) decouple
the aggregation from the estimation process, so that no assumptions about
the stochastic dependencies between the different views need to be made.
This is an obvious advantage since it is not necessary to figure out suitable
distributional assumptions and then calibrate the distribution’s parameters.

Another approach to generating the inputs of the MVO (or a more
general portfolio optimization model) by “blending” equilibrium arguments
with (more general) investor’s views, without resorting to specific distribu-
tional assumptions, is discussed in Bertsimas et al. (2012). This is a fairly
general inverse optimization approach that can incorporate any view that
can be expressed as a linear matrix inequality. Thus, it can incorporate
views addressing risk measures or risk factors in addition to views address-
ing expected returns. This approach is conceptually and methodologically
quite different from the other approaches mentioned in this paper and we
refer to Bertsimas et al. (2012) for further details.

Finally, we analyze the performance of our different approaches from ro-

3Chen and Lim (2020) consider multiple quantitative views and generalize the classical
BL approach to account for biases in both the prior distribution and the expert’s views.
The biased views and the biased prior are aggregated into a posterior distribution by using
historical forecast data in a Bayesian hierarchical model.
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bust optimization and social choice theory, respectively, in a MV framework
using historical financial market data. To this end, we compare two perfor-
mance measures of the in-sample optimal portfolios, the Sharpe Ratio and
the Certainty-Equivalent return. The analysis uses synthetic views which
are orderings of the expected asset returns generated uniformly at random
at some distance d from the realized ordering (which is obviously known
in an in-sample setting). This distance value can be seen as a control pa-
rameter for the quality of information represented in the views. The second
parameter in our computational experiments is the confidence level in the
views, denoted by c. We evaluate the performance of approaches (I) and (II)
for different combinations of values of parameters c and d. In a first step we
compare the methods within groups (I) and (II) separately, and in a second
step we compare the best performing methods from each group with each
other.

Our findings can be summarized as follows. In general, the best methods
of group (I) are the min-max regret robustness and the soft robustness.
In group (II), the methods based on the Borda rule and on the Footrule
aggregation clearly perform better than the others. The comparison across
the two groups of methods (I) and (II) reveals that the best social choice-
based methods outperform the best robust optimization-based methods for
almost all parameter settings, albeit the absolute difference between the
performance measures is not very accentuated. Thus, our results show that
an investor considering incorporating multiple qualitative views into the
portfolio allocation decision should use a method from social choice and
aggregate first, and then estimate, rather than the other way around.

The remainder of the paper is organized as follows. Section 2 prepares
the formal framework for our analysis. Section 3 presents different methods
from robust optimization for deriving an optimal portfolio given multiple
expert views. Section 4 relates to selected methods from social choice theory
that can be applied in a first step to compute a single consensus total order of
expected asset returns from different orders. In a second step the aggregated
order feeds into the portfolio selection process. Section 5 presents the results
of our computational experiments based on historical stock market data. We
conclude and discuss future work in section 6.

2. Formal framework for ordinal information

In this section we introduce the formal framework and briefly review
the extension of the BL model derived in Çela et al. (2021). We consider a
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universe of assets 1, . . . , n from which an investor has to choose a portfolio
represented by a weight vector w = (w1, . . . , wn)

⊺ with
∑n

i=1 wi = 1, where
wi represents the fraction of capital invested in asset i. We assume that
wi ≥ 0 (i = 1, . . . , n), i.e. no short selling is allowed. Let µ = (µ1, . . . , µn)

⊺ =
E(R) be the expected value of the random vector of asset returns R =
(R1, . . . , Rn)

⊺ with an n × n covariance matrix Σ = Cov(R). We assume
that µ is a normally distributed random vector

µ ∼ Nn(π, τΣ) (1)

with mean vector π and covariance matrix τΣ. Σ is estimated from his-
torical data and π is determined by invoking CAPM equilibrium arguments
as described for example in Çela et al. (2021). The scale parameter τ indi-
cates the uncertainty of the prior, the smaller the value of τ , the higher the
investor’s confidence in the estimation of the implied equilibrium return π.

The classical BL model considers quantitative views which express state-
ments about the expected return of linear combinations of the considered
assets.4 These statements are represented as equalities of the form Pµ = v,
where P is a so-called pick matrix and v is a declared outcome. For exam-
ple, the view that asset 1 will outperform asset 3 by 2% and asset 2 will
outperform asset 4 by 1% can be modeled by setting v = (0.02, 0, 01)⊺ and
the pick matrix

P =

(

1 0 −1 0 ... 0
0 1 0 −1 ... 0

)

.

Uncertainty is captured by assuming that v is subject to normally dis-
tributed perturbations ε. Thus v is a random variable V such that V =
Pµ+ ε with ε ∼ N(0,Ω) and µ, ε independent.

Çela et al. (2021) consider an extended BL-model denoted by EBL. In-
stead of using quantitative views, the authors process qualitative views
which simply express ordering relations between asset returns. These are
represented as inequalities Pµ ≥ 0, where P is again a pick matrix. For
example, the qualitative view that asset 1 will outperform asset 3 and asset
2 will outperform asset 4 can be modeled by the pick matrix

P =

(

1 0 −1 0 ... 0
0 1 0 −1 ... 0

)

.

4For a more detailed review of the BL model we refer to Meucci (2010) or Walters
(2014).
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The uncertainty is captured by the random variable V fulfilling V = Pµ+
ε and V

¯
≥ 0 with ε ∼ N(0,Ω) and µ, ε independent. The conditional

expectation of µ given the event V ≥ 0 will be denoted by µEBL and serves
as the input to a mean-variance portfolio optimization problem.

A frequent choice for the uncertainty Ω is a matrix proportional to the
covariance matrix of Pµ (see e.g. Walters (2014)), i.e.

Ω = cPΣP⊺, (2)

where the parameter c represents an overall confidence level in the views
with c = 0 corresponding to full confidence in the views. Under this setting
Çela et al. (2021) derive the following expression for µEBL:

µEBL = π +
τ

τ + c
ΣP⊺ (PΣP⊺)−1 (E(V|V ≥ 0)−Pπ) (3)

For the numerical computation of µEBL according to (3) the authors apply
an an Importance Sampling approach.

Çela et al. (2021) provide us with an algorithmic framework which out-
puts a vector µEBL of expected return estimators combining information
from historical data with a view on the future development represented by
order relations on the expected future asset returns. The outcome µEBL can
finally be used as an input for the following classical mean-variance portfo-
lio optimization model (Markowitz (1952)) with a risk-aversion parameter
δ > 0:

max
w

w⊺µ−
δ

2
w⊺Σw (4)

s.t.

n
∑

i=1

wi = 1 and wi ≥ 0 (i = 1, . . . , n)

While the approach of Çela et al. (2021) allows to account for qualitative
information in portfolio optimization, the restriction of views to one single
total order is a major loss of potentially relevant information. Rather, it
is reasonable to assume that investors consider multiple views (e.g., from
different analysts) when constructing their optimal portfolios. Ín the follow-
ing, we consider multiple views represented by K different total orders of
expected asset returns. Formally we use K permutations σk, k = 1, . . . ,K,
each of them describing a total order of expected asset returns.

We compare two different approaches to incorporate these views into
portfolio optimization. In Section 3 we first apply the extended BL approach
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described above to obtain a return estimator µk for each permutation σk.
Thus, µk is obtained by applying (3), where P is replaced by the pick
matrix Pk corresponding to permutation σk. Then, we take the vectors µk,
1 ≤ k ≤ K as possible scenarios for µ in a robust version of (4) with the
discrete uncertainty set {µk : 1 ≤ k ≤ K}. A completely different approach
is pursued in Section 4, where we apply aggregation rules from social choice
theory to reach a single total order representing a consensus over the given
permutations σk, 1 ≤ k ≤ K. Then, according to the extended BL approach,
we use (3) to compute a return estimator µ̄ for the consensus total order.
Finally, the MVO (4) is solved with µ̄ as an input.

3. Robust optimization with discrete scenarios

Robust optimization (RO), introduced by Ben-Tal and Nemirovski in
the late 1990s in the context of linear and convex optimization problems,
is a methodology for dealing with optimization problems whose input has
some uncertainty in the form of deterministic variability on the data (for
a comprehensive survey, we refer to Ben-Tal and Nemirovski (2002)). The
possible values of a parameter or a set of parameters are called scenarios.
The scenarios represent possible realizations of data and take their values
from a discrete uncertainty set or an uncertainty continuum. The goal is
to find solutions that are of high quality for each scenario or realization of
the data. There are different ways to define the quality of a solution with
respect to all scenarios, and different definitions of solution quality lead to
different robust optimization models.

In this paper we consider the classical mean-variance portfolio optimiza-
tion model (4), where the input parameter µ is uncertain and its realizations
build a discrete uncertainty set U := {µk : k ∈ {1, 2, . . . ,K}}. We assume
that there are K qualitative views, each of which is specified as a total order
σk of the assets in the portfolio according to the magnitude of their expected
returns, k ∈ {1, 2, . . . ,K}. For any k we apply the algorithmic framework
of Çela et al. (2021) to incorporate the k-th total order σk in the vector µk

of expected asset returns. In particular µk is obtained by applying (3) with
a pick matrix Pk which represents the total order of expected asset returns
specified by the permutation σk, for all k ∈ {1, 2, . . . ,K}:

µk := π +
τ

τ + c
ΣP

⊺
k

(

PkΣP
⊺
k

)−1
(E(V|V ≥ 0)−Pkπ). (5)

In the following we briefly discuss the three robust optimization variants of
(4) addressed in this paper: max-min robustness, min-max regret robustness
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and soft robustness.

3.1. Max-min robustness

In max-min robustness, also called the strictly robust optimization ap-
proach, see Ben-Tal and Nemirovski (2002), the goal is to find a solution
which maximizes the worst value of the objective function over all scenarios
in U .

max
w

min
µ

w⊺µ−
δ

2
w⊺Σw (6)

s.t. µ ∈ {µ1, . . . ,µK}
n
∑

i=1

wi = 1 and wi ≥ 0 (i = 1, . . . , n).

It is obvious that this robust version of the mean-variance formulation is
very conservative; a candidate portfolio w is considered to be optimal if it
maximizes the worst case, i.e. the smallest value of the risk adjusted expected
return that this portfolio achieves over all possible realizations of expected
asset returns in U . The above problem can be reformulated equivalently as
a concave quadratic maximization problem.

max
w,y

y −
δ

2
w⊺Σw (7)

s.t. y ≤ µ
⊺
kw (k = 1, . . . ,K)

n
∑

i=1

wi = 1 and wi ≥ 0 (i = 1, . . . , n).

It is well known that concave quadratic programming, i.e. maximizing a
concave quadratic objective function subject to linear and affine constraints
is (weakly) polynomially solvable (see e.g. Vavasis (2001)) and efficient opti-
mization algorithms for solving this type of problems are available in every
standard optimization software. Thus, in this case the max-min robust
problem (7) (or equivalently (6)) remains polynomially solvable and is com-
putationally not harder than the non-robust counterpart (4). Note, however,
that the time complexity of the algorithms for solving (7) depends on the
number K of scenarios (or views).

3.2. Min-max regret robustness

The min-max regret robustness model is less conservative than the max-
min robustness model. In this model the quality of a solution is measured
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in terms of the maximum regret defined as follows.

Definition 1. The maximum regret MaxReg(w) of a portfolio w with re-
spect to the mean-variance portfolio optimization model (4) and the discrete
uncertainty set U :=

{

µk : k ∈ {1, 2, . . . ,K}
}

is defined as

MaxReg(w) := max
µ∈{µ1,µ2,...,µK}

[f(wµ,µ)− f(w,µ)] , (8)

where f(w,µ) is the objective function of (4), i.e. f(w,µ) := w
⊺µ− δ

2
w

⊺Σw,
and wµ maximizes f(w,µ) for fixed µ, i.e.

f(wµ,µ) = max

{

f(w,µ) : w ∈ R
n
+,

n
∑

i=1

wi = 1

}

.

The expression in the square parentheses in (8) is called the regret of the
portfolio w for a given µ and is equal to the portion of the objective function
value lost when the optimal portfolio wµ with respect to µ is replaced by
the portfolio w.

The min-max regret robustness problem is then given as

min{MaxReg(w) : w ∈ R
n
+,

n
∑

i=1

wi = 1} . (9)

For k ∈ {1, 2, . . . ,K} the portfolios wµk
and the values fk := f(wµk

,µk)
of the risk-adjusted return can be computed by setting µ := µk for k ∈
{1, 2, . . . ,K} and solving K mean-variance portfolio optimization problems
as in (4). Observe that

MaxReg(w) := max
k∈{1,2,...,K}

[

fk−w⊺µk+
δ

2
w⊺Σw

]

= max
k∈{1,2,...,K}

[

fk−w⊺µk

]

+
δ

2
w⊺Σw .

Thus, (9) can be equivalently written as

−max

{

− max
k∈{1,2,...,K}

[fk −w⊺µk]−
δ

2
w⊺Σw : w ∈ R

n
+,

n
∑

i=1

wi = 1

}

.

By setting −yw := maxk∈{1,2,...,K}

[

fk − w⊺µk

]

we get the next equivalent
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formulation of (9) as

−max

{

yw −
δ

2
w⊺Σw : − yw ≥ fk −w⊺µk, k ∈ {1, 2, . . . ,K},w ∈ R

n
+,

n
∑

i=1

wi = 1

}

.

Finally, by observing that in the last formulation the variable yw can be
replaced by a single variable y (and by neglecting the minus in front of the
problem) we get the following concave quadratic maximization formulation
of (9)

max
w,y

y −
δ

2
w⊺Σw (10)

s.t. y ≤ µ
⊺
kw− fk , k = 1, . . . ,K

n
∑

i=1

wi = 1 and wi ≥ 0 , i = 1, . . . , n.

Thus, similarly to the case of the max-min robustness approach, also
the min-max regret robustness problem (9) (or equivalently (10)) remains
polynomially solvable and is not harder than its non-robust counterpart (4).
Note, however, that the time complexity of algorithms for solving (10) heav-
ily depends on the number K of scenarios (or views). Other than in the case
of the max-min robust version of the mean-variance formulation, here we also
need to solve K concave quadratic minimization problems to determine fk,
k ∈ {1, 2, . . . ,K}, prior to solving the concave quadratic maximization prob-
lem (10) which analogously to (7) involves K + 1 linear constraints besides
the nonnegativity constraints.

3.3. Soft robustness

The soft robustness model allows to control the degree of conservative-
ness of the robust solution in the vein of the so called Γ-robustness (see
Bertsimas and Sim (2003)). This model includes a parameter Γ ∈ (0, 1]
which allows to adjust the extent at which the possible estimators of the
expected asset returns µk, k ∈ {1, 2, . . . ,K}, are taken into account. More
precisely, we want to choose a portfolio w∗ which maximizes a threshold
of risk adjusted return which would be exceeded by at least ΓK estima-
tors µk, k ∈ {1, 2, . . . ,K}. In other words w∗ maximizes the empirical
(1−Γ)-quantile yΓ(w) of the risk-adjusted expected returns over all feasible
portfolios w.

Definition 2. The empirical (1− Γ)-quantile yΓ(w) of the set

13



{f(w,µ1), f(w,µ2), . . . , f(w,µK)} is defined as follows

yΓ(w) := sup
{

z ∈ R :
∣

∣

{

k : k ∈ {1, 2, . . . ,K}, f(w,µk) ≥ z
}
∣

∣ ≥ ΓK
}

.

The corresponding optimization problem is then given as

max

{

yΓ(w) : w ∈ R
n
+,

n
∑

i=1

wi = 1

}

. (11)

By introducing a new variable y to represent the maximum of yΓ(w) we
obtain the following equivalent formulation of (11).

max
w,y

y (12)

s.t.
∣

∣{k : k ∈ {1, 2, . . . ,K}, f(w,µk) ≥ y}
∣

∣ ≥ ΓK
n
∑

i=1

wi = 1 and wi ≥ 0 , i = 1, . . . , n.

Obviously, the larger the value of Γ, the more conservative is the model. In
the limit case Γ = 1 we get yΓ(w) = min{f(w,µ1), f(w,µ2), . . . , f(w,µK)}
and the soft robustness model coincides with max-min robustness model.
On the other hand, if Γ becomes very small, e.g. Γ = 1

K
, we get yΓ(w) =

max{f(w,µ1), f(w,µ2), . . . , f(w,µK)} and the soft robustness model be-
comes

max
w

max
µ

w⊺µ−
δ

2
w⊺Σw

s.t. µ ∈ {µ1,µ2, . . . ,µK}
n
∑

i=1

wi = 1 and wi ≥ 0 , i = 1, . . . , n.

Observe now that (12) can be formulated as a convex mixed integer
nonlinear problem (MINLP) whith a linear objective function involving just
continuous variables as well as linear and convex quadratic constraints. In-
deed, we introduce the binary variables vk ∈ {0, 1}, k ∈ {1, 2, . . . ,K}, such
that vk = 0 iff y ≤ f(w,µk) and vk = 1, otherwise. In the latter case
y ≤ f(w,µk) + vkM is fulfilled for a large enough constant M . The con-
straint

∑K
k=1 vk ≤ (1 − Γ)K guarantees that at least ΓK of the variables

14



vk equal zero, i.e. that f(w,µk) ≥ y holds for at least ΓK estimators µk.
Finally, by introducing an additional auxiliary variable z as an upper bound
on w⊺Σw the inequality y ≤ f(w,µk) + vkM can be formulated as a linear
constraint y ≤ w⊺µk − δ

2
z + vkM . Summarizing we obtain the following

equivalent formulation of (12):

max
w

y (13)

s.t. y ≤ w⊺µk −
δ

2
z + vkM , k = 1, 2, . . . ,K

w⊺Σw ≤ z
n
∑

k=1

vk ≤ (1− Γ)K

n
∑

i=1

wi = 1 and wi ≥ 0 , i = 1, . . . , n

vk ∈ {0, 1} , k = 1, . . . ,K.

In general the convex MINLP is a NP-hard problem because it includes
the mixed integer linear programming (MILP), see e.g. Belotti et al. (2013).
There is a wealth of literature on exact and heuristic solution approaches for
convex MINLP, see e.g. the recent review by Kronqvist et al. (2019). Note,
however, that (13) has a particular structure: the constraints involving the
binary variables are linear and the objective function just involves continu-
ous variables. The outer approximation method of Duran and Grossmann
(1986) is an iterative approach which exploits the particular structure men-
tioned above and consists in solving an alternate finite sequence of convex
quadratic subproblems and relaxations of a MILP as a master problem. A
rigorous analysis of the convergence properties of the algorithm can also be
found in Belotti et al. (2013).

4. Aggregation by social choice methods

In this section we pursue the idea of computing a single consensus total
order of expected asset returns which is a sort of “center” of all K given
total orders. Formally, we are looking for a total order σ∗ which minimizes
the sum of distances to the total orders σ1, . . . , σK (see Marden (1996) for
an overview). The distance between two total orders σ′ and σ′′ will be
measured by the classical Kendall-Tau distance which counts the number
of pairwise disagreements between two total orders, i.e. the number of pairs
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(i, j) with σ′(i) < σ′(j) and σ′′(i) > σ′′(j). For our purposes we use the
normalized version of the Kendall-Tau distance KT (σ′, σ′′) given as the
number of pairwise disagreements between σ′ and σ′′ divided by the overall
number of pairs (i, j) with i 6= j, see e.g. Dwork et al. (2001). Then we are
looking for an optimal total order σ∗ such that

σ∗ = arg min
σ∈Sn

K
∑

k=1

KT (σ, σk), (14)

where Sn is the set of all permutations of numbers 1, . . . , n. This optimiza-
tion problem, which is called the Kemeny-Young problem,is the basis for the
well-known Kemeny-Young method for group decisions. However, the prob-
lem is NP-hard for K ≥ 4 (Dwork et al. (2001)) and becomes practically
intractable already for a moderate number of assets. Thus, we will focus
on approximate solutions to the Kemeny-Young problem, in particular on
methods developed in the area of social choice.

Social choice theory (see e.g. Arrow et al. (2002)) studies the aggregation
of individual preferences or opinions into a group decision considering issues
such as fairness, social welfare or acceptability. Typical areas of application
are voting, selection of committees and allocation of resources. A central
concept in this field is a social welfare function (cf. the seminal work of
Nobel price winner Sen (1970)), which receives as input K total orders
of the objects 1, . . . , n representing the preferences of K individuals and
determines as output a single total order. This is exactly the task we are
facing in this section. The mapping of the total orders σk, 1 ≤ k ≤ K, to
σ∗ in (14) can be seen as one particular social welfare function. For a total
order σ we call the sum in the righthand side of (14) the Kendall-Tau score
of σ (with respect to the input total orders σk, 1 ≤ k ≤ K).

In social choice theory a large number of social welfare functions were
introduced and their theoretical properties investigated. A good overview
can be found in Brams and Fishburn (2002). In the following we will de-
scribe some of the more prominent examples which will then be applied to
compute a total order of expected asset returns. For a broader discussion
and computational aspects we refer the reader to Brandt et al. (2016).

4.1. Borda rule

The Borda rule was formulated by Jean-Charles Chevalier de Borda in
1770 and is one of the most prominent and natural aggregation rules. It
belongs to the family of scoring rules, where an element at a certain position
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of a total order is assigned a certain number of points. In case of the Borda
rule, the asset i at position σ(i) in a total order gets a Borda score Borσ(i) :=
n−σ(i). The aggregation works by simply summing up for every asset i the
scores over all K total orders, i.e.

∑K
k=1Borσk

(i), and sorting the assets in
decreasing order of these total scores.

4.2. Footrule Aggregation

This aggregation is based on an optimization problem similar to (14),
but it applies the Spearman footrule SF (σ′, σ′′) for measuring the distance
between two total orders σ′ and σ′′ instead of the Kendall-Tau distance. It is
based on measuring for every i the absolute difference between the positions
σ′(i) and σ′′(i) and summing up these values. Formally, we are looking for
a total order σ∗ such that

σ∗ = arg min
σ∈Sn

K
∑

k=1

SF (σ, σk) , with SF (σ, σk) =

n
∑

i=1

|σ(i) − σk(i)|. (15)

It was shown by Diaconis and Graham (1977) that the difference between
the Spearman footrule distance and the Kendall-Tau distance can be bounded
by

KT (σ′, σ′′) ≤ SF (σ′, σ′′) ≤ 2KT (σ′, σ′′). (16)

Moreover, SF (σ′, σ′′) can be computed efficiently in polynomial time by
solving a linear assignment problem as shown e.g. in Dwork et al. (2001).

4.3. Copeland Method

For a given set of K total orders, we introduce a relation % (majority
dominance) on the set of assets such that i % j if and only if i is ranked
higher than j by a majority of the total orders, i.e. |{k ∈ {1, . . . ,K} : σk(i) <
σk(j)}| ≥ K/2}|, see e.g. Fishburn (1977). The Copeland value Cop(i) of
an asset i is defined as the number of assets majority dominated by i minus
the number of assets majority dominating i, i.e.

Cop(i) := |{j ∈ {1, . . . , n} : i % j}| − |{j ∈ {1, . . . , n} : j % i}|

For use as an aggregation rule, assets are ordered in decreasing order of their
Copeland values.

4.4. Best-of-k-Algorithm

This simple approach solves the Kemeny–Young problem under the strong
restriction that σ∗ is chosen only among the given total orders, i.e. in (14)
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the domain of the minimization σ ∈ Sn is replaced by σ ∈ {σ1, . . . , σK}.
Thus, it suffices to calculate the Kendall-Tau distance between all pairs of
total orders and then compare the appropriate sums. This straightforward
approach yields a 2-approximate solution to (14) with a Kendall-Tau dis-
tance at most twice as large as given by σ∗ (see e.g. Ailon et al. (2008)).

4.5. MC4-Algorithm

In their widely cited paper Dwork et al. (2001) present four aggregation
algorithms based on Markov chains. Among these, we will consider the so-
called MC4-Algorithm, which performed best in the empirical evaluation
of Dwork et al. (2001) and Schalekamp and van Zuylen (2009). In this ap-
proach, the n assets correspond to the n states of a Markov chain. Starting
from a randomly chosen state, the Markov process moves in each iteration
from the current state to a new state of the system. From a current state
i, the new state j is chosen with a certain transition probability pij. If the
current situation of the system is represented by a probability distribution
x, where xi gives the probability that the process is currently in state i,
then the probability distribution of the next state is given by x⊺P , where
the probability matrix P = (pij) consists of the transition probabilities. It
is known that under certain conditions, this process reaches a stationary
distribution y with y = y⊺P , and y can be computed e.g. by a simple
power-iteration algorithm.

When applying MC4 in the aggregation of total orders, the probabilities
pij are defined as follows: if i is the current state, a potential new state j
is chosen from {1, . . . , n} uniformly at random. If a majority of the total
orders ranks j before i, i.e. j % i according to the majority dominance of
the Copeland Method5, then the Markov process moves to state j, otherwise
it remains in state i. To ensure that the process has a unique stationary
distribution Schalekamp and van Zuylen (2009) add a random “jump”: in
every step the process moves from i to the randomly chosen j with a tiny
probability α, independently from the dominance relation. With probability
1 − α, the move to j is only chosen if j % i. Hence, there is a transition
probability pij = 1/n + α/n, if j % i, and pij = α/n, otherwise. The non-
transition probabilities are then set as pii = 1 −

∑

j 6=i pij, for all i. We use
α = 1/100 to ensure that for up to n = 100 assets the sum of the transition
probabilities does not exceed 1.

5Ties are broken lexicographically, i.e. by the index number of the assets.
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After reaching the unique stationary distribution y, the aggregation of
total orders follows by sorting the assets in decreasing order of yi.

4.6. Local Improvement

Any total order σ produced by one of the above aggregation methods can
be further improved by reducing the corresponding value of the objective
function in (14), i.e. the Kendall-Tau score of σ. In our approach this is
done by an iterative pairwise exchange operation. We consider the assets
in increasing order, i.e. we go through all positions ℓ = 2, 3, . . . , n. In the
iteration for asset i in position ℓ, σ(i) = ℓ, we compare i with the asset j
at the preceding position σ(j) = ℓ − 1. If j % i (according to the majority
dominance), then and we proceed to the next iteration for the asset in
position ℓ + 1. Otherwise, if i % j, we exchange i and j in σ by setting
σ(i) = ℓ − 1 and σ(j) = ℓ, thereby improving the Kendall-Tau score of
σ. We continue by comparing i with the asset at position ℓ− 2 and so on,
until either a comparison without improvement is found or i reaches the first
position. At this point the iteration for asset i terminates and we move to
the next iteration for the immediate successor of asset i at position ℓ + 1.
This procedure is called “Local Kemenization” in Dwork et al. (2001) and
“InsertionSort” in Schalekamp and van Zuylen (2009).

In our experiments we apply this process of Local Improvement to all
total orders produced by the above aggregation procedures.

5. Computational experiments

In this section, we evaluate the performance of the different approaches
presented in Sections 3 and 4 for aggregating multiple qualitative views, ex-
pressed as total orders of expected returns of assets in the portfolio, in the
context of classical MVO using real stock market data. We apply the ex-
tended BL-model suggested in Çela et al. (2021), more precisely the equality
(3), to compute an estimator of expected asset returns for any given total
order of the latter (see Section 2).

We use historical data from two stock indices, one in Europe and one in
the U.S. (see Section 5.1). For both samples, we compare the performance
of monthly rebalanced MVO portfolios based on (I) the several robust op-
timization approaches and (II) the various ordering aggregation methods
based on social choice theory.

In a first step, we compare the performance of the different approaches
within each group separately. To mitigate the effect of estimation errors
the analysis is based on in-sample tests. The tests are in-sample in that
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(a) the complete time series of realized asset returns are used to estimate
the corresponding covariance matrix (which then remains constant over the
entire time horizon) and (b) the synthetic views (i.e. total orders) on the
expected asset returns in the time interval (t, t+1) are randomly generated
(see below) utilizing information of the actual total order of asset returns
realized in that time interval. In a second step and after identifying the
two best performing approaches from each group (I) and (II), we compare
the performance of the two winners of each group to identify the overall
“champion”.

All experiments were implemented and run in Matlab R2021b on a stan-
dard PC.6

5.1. Data description

We create two samples with single stock data from the EURO STOXX
50 and the S&P 100. The EURO STOXX 50 is a blue-chip stock index
that comprises fifty of the largest and most liquid stocks in the Eurozone.
The S&P 100, a subset of the S&P 500, includes the largest U.S. companies
across a variety of industries. We collect monthly total return index data
from Refinitiv Datastream for the period December 1998 to December 2021
for all stocks included in either index at the end of 2021. We eliminate
stocks for which we do not have a continuous price series over the entire
time period. In this way we identify 38 (76) stocks from EURO STOXX
50 (S&P 100) that are eligible for our investigation. We calculate monthly
returns from the total return index series, with January 1999 being the first
observation, giving a total of 276 monthly returns for each stock. Table 1
reports descriptive statistics for cross-sectional averages for our sample of
constituents of the EURO STOXX 50 (Panel A) and the S&P 100 (Panel
B). For the former, the average monthly holding period return (in EUR)
is 1.05% with an average standard deviation of 8.33%. The corresponding
values for our S&P 100 sample are 1.14% for the average monthly return (in
USD) and 8.21% for the standard deviation. Concerning skewness, we find
evidence of slightly positive values, while kurtosis shows the typical pattern
of fat tails in both samples.

6Since the computations required negligible running times and the computational per-
formance was not the focus of this study we refrain from describing further technical
details.
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Panel A: Selected constituents of EURO STOXX 50

monthly return (%) mean q1 q2 q3 min max

mean 1.05 0.76 0.96 1.22 0.42 2.32
stdev 8.33 6.62 8.57 9.52 4.79 11.79
skew 0.15 -0.13 0.13 0.32 -1.02 1.22
excess kurtosis 3.74 1.10 1.90 4.74 0.34 20.30

Panel B: Selected constituents of S&P 100

monthly return (%) mean q1 q2 q3 min max

mean 1.14 0.81 1.02 1.37 0.22 3.03
stdev 8.21 6.51 7.46 9.12 4.73 20.81
skew 0.31 -0.23 0.08 0.38 -1.38 6.51
excess kurtosis 5.82 1.53 2.64 4.84 0.21 76.35

Table 1: Descriptive statistics for monthly returns (in %) of 38 stocks in the EURO
STOXX 50 (Panel A) and 76 stocks in the S&P 100 (Panel B). All stocks are included a)
that were constituents of one of the corresponding stock indices on December 31, 2021, and
b) for which a complete return time series is available for the period from January 1999
to December 2021. The values for mean and stdev are given in %. q1 (q2) [q3] represents
the first (second) [third] quartile. All measures are expressed as equally weighted cross
sectional averages. Monthly returns are calculated as holding period returns from the last
day of one month to the last day of the following month. Sample period: January 1999
to December 2021. Source: Refinitiv Datastream.

5.2. Setup of the experiments

We choose a large number of different parameter settings for our experi-
ments. For each of the two samples we generate K total orders of all assets
for K ∈ {5, 10, 20}. The total orders represent different synthetic qualita-
tive views, as they might be expressed by different experts (e.g. financial
analysts) under different scenarios. We consider our choice of values for K
to be reasonable, but emphasize that our methods can in principle be ap-
plied to any number of views. We further differentiate the views according
to the validity of the information they contain. We quantify the degree of
validity of information in a total order O in terms of the Kendall-Tau dis-
tance d of O from the total order of the assets returns realized in the time
interval (t, t + 1) which represents the correct ordering. Note that if the
Kendall-Tau distance between O and the correct ordering is about 0.5, then
O coincides with the correct ordering for about half of the pairs of assets.
Such a total order O would therefore represent a complete lack of knowledge
about the correct ordering. On the other hand, a value of d around 0 (and
symmetrically a value of d around 1) corresponds to a high degree of useful
information, because in this case O would coincide with the correct ordering
for almost all pairs (no pairs) of assets. In order to cover the whole range of
the possible values of d we consider d ∈ {0.2, 0.3, 0.4, 0.47}. For each value
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of d we generate K random total orders of assets, each of them having the
same Kendall-Tau distance d from the correct ordering.7

Finally, we consider four different levels of overall confidence in the va-
lidity of the generated total orders, represented by the parameter c (see
equation (2)). Note that the same confidence level applies to each of the
K total orders. This should reflect the fact that it is indeed difficult to a
priori assess the information content of a (qualitative) view.8 We span a
wide range of relevant values with c ∈ {0.25, 0.5, 0.75, 0.95}, where c = 0.25
(c = 0.95) indicates a very high (low) degree of confidence. As in Çela et al.
(2021), we set τ = 1 − c, where the parameter τ represents the confidence
in the prior information.

For each value K ∈ {5, 10, 20}, we perform our experiments for all 16
value combinations of the parameters d and c, giving a total number of 48
parameter settings. One might argue that some parameter combinations,
such as large distances and high levels of confidence, are less meaningful, but
we chose to retain all combinations because it is in general unpredictable
where the ordering information will come from and in what context our
method will be applied.

5.3. Measuring portfolio performance

Our goal is to find the best out of the aforementioned approaches that
allow for integrating multiple input orderings into MVO (cf. (I) and (II)
at the beginning of this section). To make a decision in this ”horse race”
we compare the performance of the optimal portfolios derived from each
approach by means of two metrics:9

• Sharpe Ratio (SR): The Sharpe Ratio is defined as the excess return of
a portfolio divided by its total risk, where the latter is measured by the
standard deviation of portfolio returns. The excess return is calculated
with respect to the average risk-free rate. Thus, if the return and the

7Note that we could also handle individual values of d for each total order to account
for differences in the quality of the views. This can be useful, for example, when several
financial analysts have different track records in terms of their forecasts and stock recom-
mendations in the past. In this case the view of an analyst with a high track record could
be assigned a lower value of d, while the view of an analyst with a poor record could be
given a higher d.

8Similarly to parameter d our model is fully flexible to account for different confidence
levels c for each total order.

9For a detailed description of the two metrics we refer to Bodie et al. (2021). They
are used, among others, in studies by DeMiguel et al. (2009) and Allaj (2020).
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volatility of a porfolio P are given by µP and σP , respectively, then the
Sharpe Ratio SRP of the portfolio P is given as10

SRP =
µP − rf

σP
,

where rf is the risk-free rate. We use the 3m Euribor for the EURO
STOXX 50 sample and the 3m USD Libor for the S&P 100 sample. The
higher SR the higher the risk-adjusted performance of a portfolio.

• Certainty-Equivalent return (CEQ): The Certainty-Equivalent return is
the zero-risk return that an investor with risk aversion δ is willing to
accept rather than pursuing a particular risky investment strategy with
a higher but riskier return. Formally, the Certainty-Equivalent return
CEQP of a portfolio P with return µP and volatility σP is given as

CEQP = µP −
δ

2
σ2
P .

We set δ equal to three which is a commonly used value in the literature
(e.g., Çela et al. (2021)). As with SR investors prefer portfolios with
higher CEQ values to portfolios with lower values.

5.4. Computational comparison

As mentioned at the beginning of this section, we first evaluate the per-
formance of the robust optimization-based approaches (I) and the perfor-
mance of the social choice-based approaches (II) separately and try to iden-
tify the best performing methods in each of the two groups.

In (I) we consider six robust optimization variants: Max-min robustness
(Max-min), Min-max regret robustness (Min regret) and soft robustness
(Soft Γ) with Γ ∈ {0.25, 0.50, 0.75, 1} as described in Section 3. In (II), we
consider five ordering aggregation approaches: Borda rule (Borda), Footrule
aggregation (Footrule), Best-of-k algorithm (Best-of-k), Copeland method
(Copeland) and MC4-algorithm (Markov). As described in Section 5.2, we
conduct experiments for 48 parameter settings.

For each group of approaches (I) or (II) and for each parameter setting,
we determine the winners in terms of SR and CEQ. We define as winners
all methods with a SR, or CEQ value within 1% of the respective maximum

10Note that since we are using in-sample mean and variance estimates, we calculate
the in-sample Sharpe Ratio with portfolio weights obtained with these estimates.
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value. For each method we count the number of wins out of the 48 “races”
and report results in Table 2.

In general, we find that there is no particular method in either (I) or (II)
that clearly dominates all other methods across all parameter settings. We
therefore select the two most successful methods from each of the groups (I)
and (II). To this end, we consider the total number of wins over all parameter
settings with respect to SR and CEQ, respectively. To illuminate the best
methods within each group (I) and (II) we indicate the method with the
highest (second highest) number of total wins with a solid (dashed) box in
Table 2.

For the methods based on robust optimization, the choice of Soft 0.5
is unambiguous: this method has the largest number of wins in 3 out of 4
subtables. This method is also mostly top-ranked in this group regardless
of the number of views K. Other Soft methods also perform well in some
races, but Soft 0.5 is clearly the best performing variant from this family. As
the second best method within group (I), we identify Min regret with one
win and one second place out of 4 subtables. Min regret is closely followed,
but not dominated, by Max-min.

Among social choice-based methods, Borda can be seen as the overall
winner with 4 wins and Copeland is the runner-up in all 4 subtables (even
with some first places in individual settings), although the competitors are
quite close. Therefore, and to identify the best method that allows for
integrating multiple input orderings into MVO, we focus our further inves-
tigations on the four methods Min regret, Soft 0.5, Borda and Copeland.

Table 3 provides more detailed results for the comparison of these ”first
step winners”. For each combination of the Kendall-Tau distance d and the
confidence level c, we consider the number of wins across the three portfolios
obtained for the three values ofK. These numbers are counted separately for
SR and CEQ. The full table, while somewhat overwhelming at first glance,
allows for relatively clear conclusions.

First, considering the results for different confidence levels c, the two
methods based on robust optimization are reasonably competitive with the
two social choice methods for higher confidence levels, i.e. c ≤ 0.5, but are
inferior for low confidence levels, e.g. not achieving a single win for c = 0.95
in either sample. This can be explained by the fact that these methods
follow a “first estimate, then aggregate” philosophy, i.e., they first translate
views into posterior return estimators and then consider these estimators as
scenarios in the context of the robust optimization model. For low confidence
levels (high values of c), the information contained in the views has a minor
impact on the posterior estimator of the vector of expected returns, and
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Panel A: Selected constituents of EURO STOXX 50

SR Certainty-Equivalent return CEQ

Method K = 5 K = 10 K = 20 total K = 5 K = 10 K = 20 total

Max-min 3 3 2 8 3 2 1 6

Min regret 7 2 3 12 3 2 1 6
Soft 0.25 3 4 4 11 3 1 2 6

Soft 0.5 4 6 6 16 9 10 7 26

Soft 0.75 1 1 6 8 1 2 7 10
Soft 1 1 1 0 2 1 2 0 3

Borda 14 10 14 38 15 13 14 42
Footrule 1 5 8 14 3 3 9 15

Copeland 5 6 14 25 6 12 15 33
Best-of-k 3 0 8 11 3 2 9 14
Markov 3 5 12 20 6 8 10 24

Panel B: Selected constituents of S&P 100

Sharpe Ratio SR Certainty-Equivalent return CEQ

Method K = 5 K = 10 K = 20 total K = 5 K = 10 K = 20 total

Max-min 4 5 7 16 1 2 1 4

Min regret 9 6 7 22 1 0 0 1
Soft 0.25 3 2 3 8 6 2 1 9

Soft 0.5 5 4 5 14 8 12 11 31
Soft 0.75 0 3 2 5 0 0 5 5

Soft 1 2 1 1 4 4 3 3 10

Borda 10 9 13 32 12 12 14 38
Footrule 2 8 8 18 4 6 9 19

Copeland 9 11 11 31 9 14 13 36
Best-of-k 3 5 7 15 5 3 9 17
Markov 9 6 9 24 6 10 12 28

Table 2: Number of wins of different methods of aggregating qualitative views orga-
nized in groups. Methods ’Max-min’ to ’Soft 1’ denote robust optimization-based ap-
proaches (group I), ’Borda’ to ’Markov’ are social choice-based approaches (group II).
K ∈ {5, 10, 20} indicates the number of views in terms of total orders of assets. The input
total orders have four different values of Kendall-Tau distance d to the correct order of
returns, d ∈ {0.2, 0.3, 0.4, 0.47}. The level of confidence in the views c takes four different
values: c ∈ {0.95, 0.75, 0.50, 0.25}. The maximum number of wins for any K is 16. Results
are counted as wins if they deviate from the corresponding optimum within a group (I or
II) by less than 1 percent. Solid (dashed) boxes give the highest (second highest) number
of total wins within robust estimation and social choice methods, respectively. Panel A
(B) shows results for 38 (76) stocks in the EURO STOXX 50 (S&P 100). Sample period:
January 1999 to December 2021. Source: Refinitiv Datastream.
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Panel A: Selected constituents of EURO STOXX 50

Kendall tau distance

d = 0.2 d = 0.3 d = 0.4 d = 0.47

Method c SR CEQ SR CEQ SR CEQ SR CEQ

Min regret 0.95 0 0 0 0 0 0 0 0

Soft 0.5 0 0 0 0 0 0 0 0

Borda 3 3 3 3 3 3 2 2

Copeland 2 2 1 1 1 1 3 3

Min regret 0.75 2 0 1 0 0 0 0 0

Soft 0.5 0 0 1 0 1 0 2 0

Borda 0 3 2 3 1 3 3 3

Copeland 1 3 2 3 2 2 0 1

Min regret 0.50 0 0 1 0 0 0 0 0

Soft 0.5 1 0 0 0 1 0 3 1

Borda 3 3 3 3 2 3 1 1

Copeland 2 3 1 2 1 2 0 1

Min regret 0.25 1 0 1 0 0 0 0 0

Soft 0.5 2 0 1 0 1 0 3 2

Borda 1 3 1 2 2 3 0 0

Copeland 0 1 1 3 1 3 0 1

Panel B: Selected constituents of S&P 100

Kendall tau distance

d = 0.2 d = 0.3 d = 0.4 d = 0.47

Method c SR CEQ SR CEQ SR CEQ SR CEQ

Min regret 0.95 0 0 0 0 0 0 0 0

Soft 0.5 0 0 0 0 0 0 0 0

Borda 3 3 3 3 3 3 1 1

Copeland 2 2 2 1 1 0 2 2

Min regret 0.75 2 0 2 0 0 0 0 0

Soft 0.5 1 0 0 0 1 0 1 0

Borda 0 3 2 3 1 3 0 0

Copeland 1 3 2 3 2 2 2 3

Min regret 0.50 3 0 3 0 2 0 0 0

Soft 0.5 0 0 0 0 1 0 2 1

Borda 0 3 1 3 1 3 1 1

Copeland 0 3 1 3 2 2 0 2

Min regret 0.25 2 0 2 0 1 0 0 0

Soft 0.5 1 0 0 0 1 0 3 2

Borda 0 3 1 3 1 3 0 0

Copeland 0 2 1 3 0 2 1 2

Table 3: Number of wins for selected methods of aggregating qualitative views per different
pairs of values of the Kendall tau distance d and the confidence parameter c. The numbers
are aggregated across three different levels for the number of views K ∈ {5, 10, 20}. Results
are counted as wins if they deviate from the optimum within a parameter setting by less
than 1 percent. SR (CEQ) denotes the Sharpe Ratio (Certainty-Equivalent return). Solid
boxes give the highest number of total wins within a parameter setting. Panel A (B) shows
results for 38 (76) stocks in the EURO STOXX 50 (S&P 100). Sample period: January
1999 to December 2021. Source: Refinitiv Datastream.

26



the latter is not significantly different from the prior estimator. This leads
to very similar scenarios for the robust optimization. Consequently, the
optimal robust portfolio does not differ much from the optimal portfolio
obtained by using only the prior estimator of expected returns and not
considering any qualitative views at all. The social choice methods, on the
other hand, aggregate the views into one ordering, still taking all information
into account. Only when the posterior return estimator is calculated does
the dampening effect of low confidence come into play. Therefore, and for
both performance measures, the two social choice methods clearly dominate
the horse races for higher values of c.

For high confidence levels (i.e., low values of c), the result is not so clear-
cut, at least when looking at the Sharpe Ratios. Evaluating all scenarios
with c ≤ 0.5, Min regret shows the highest number of wins for SR in the
S&P 100 sample. But even in this setting, the social choice methods remain
the predominant methods in the EURO STOXX 50 sample and in general
when CEQ is used as the performance measure.

Second, regarding the influence of different degrees of information va-
lidity, expressed by different distances d of the views from the correct or-
der, there is almost no effect on the ranking of the different methods. For
both samples and for both performance measures, the social choice methods
achieve a higher number of wins than group (I) methods almost without
exception. The respective overall winner, which in most cases is the Borda
rule, achieves first places regardless of the parameter d. Only for a high
level of confidence in the views (c = 0.25) do the robust optimization meth-
ods beat the social choice methods in some settings; however, the degree of
information quality turns out to be irrelevant for this result.

Finally, in addition to the influence of the parameters c and d on the
rankings of the different methods of aggregating multiple qualitative views
in MVO, we are interested in how the number of considered views K (i.e.,
total orders ) affects the outcome of our horse races. To answer this question,
we refer to the results in Table 4, where the actual values of SR and CEQ are
given for various values of K = 5, 10, 20 for each d (averaged over all c) and
for each c (averaged over all d). We find that changing the number of views
considered has almost no influence on the overall winner of our horse races.
Although the levels of our performance measures increase with the number
of views considered, as can well be expected, the rankings of the respective
methods in the different settings remain largely unaffected. Aggregating the
views before estimating the posterior distribution of portfolio returns turns
out to be superior to estimating the individual distributions and then aggre-
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gating them, mostly regardless of the number of views considered. Within
the winning group of social methods, Borda tends to perform slightly better
than Copeland for K = 5, while for larger K, e.g. K = 20, these two social
choice approaches are more or less on par.

To emphasize our main experimental result, we present the total number
of wins for our selected methods for all 48 parameter settings in Table 5.
It shows that the social choice methods dominate the robust optimization
methods in our experiments for both panels and for both performance met-
rics. We therefore recommend that if an investor considers to include sev-
eral qualitative views into the BL portfolio optimization framework (s)he
should apply one of our proposed methods from social choice theory, which
commonly ”aggregates first and then estimates” rather than the other way
around. The approach suggested by Borda should be preferred over the
Copeland rule since it is the winner in three out of our four subtables.

28



Panel A: Selected constituents of EURO STOXX 50

K = 5 d = 0.2 d = 0.3 d = 0.4 d = 0.47 c = 0.95 c = 0.75 c = 0.50 c = 0.25

Method SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ

Min regret 1.43 0.11 1.40 0.10 1.23 0.08 0.44 0.02 1.01 0.05 1.17 0.08 1.15 0.09 1.16 0.09

Soft 0.5 1.23 0.10 1.15 0.09 1.06 0.08 0.53 0.03 0.49 0.03 1.14 0.08 1.17 0.10 1.18 0.10

Borda 1.45 0.12 1.42 0.12 1.34 0.10 0.57 0.04 1.12 0.06 1.24 0.10 1.24 0.11 1.17 0.11

Copeland 1.42 0.12 1.41 0.11 1.32 0.10 0.55 0.03 1.10 0.06 1.23 0.10 1.21 0.11 1.16 0.10

K = 10 d = 0.2 d = 0.3 d = 0.4 d = 0.47 c = 0.95 c = 0.75 c = 0.50 c = 0.25

Method SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ

Min regret 1.44 0.10 1.40 0.10 1.26 0.08 0.58 0.03 1.05 0.06 1.22 0.08 1.22 0.09 1.19 0.09

Soft 0.5 1.32 0.11 1.28 0.10 1.17 0.09 0.78 0.05 0.57 0.03 1.32 0.09 1.34 0.11 1.33 0.11

Borda 1.51 0.12 1.52 0.12 1.46 0.11 0.84 0.06 1.27 0.07 1.37 0.11 1.38 0.12 1.30 0.12

Copeland 1.52 0.12 1.49 0.12 1.46 0.11 0.85 0.06 1.27 0.07 1.39 0.11 1.34 0.12 1.31 0.12

K = 20 d = 0.2 d = 0.3 d = 0.4 d = 0.47 c = 0.95 c = 0.75 c = 0.50 c = 0.25

Method SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ

Min regret 1.46 0.10 1.43 0.10 1.23 0.08 0.65 0.03 1.04 0.06 1.28 0.08 1.24 0.09 1.22 0.09

Soft 0.5 1.37 0.11 1.41 0.11 1.32 0.10 1.04 0.07 0.83 0.05 1.43 0.11 1.42 0.12 1.47 0.12

Borda 1.50 0.12 1.50 0.12 1.48 0.12 1.09 0.08 1.36 0.08 1.43 0.12 1.38 0.12 1.39 0.13

Copeland 1.50 0.12 1.50 0.12 1.48 0.12 1.10 0.08 1.36 0.08 1.43 0.12 1.40 0.13 1.39 0.13

Panel B: Selected constituents of S&P 100

K = 5 d = 0.2 d = 0.3 d = 0.4 d = 0.47 c = 0.95 c = 0.75 c = 0.50 c = 0.25

Method SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ

Min regret 1.64 0.13 1.61 0.12 1.54 0.11 0.58 0.03 1.36 0.07 1.39 0.10 1.33 0.11 1.28 0.11

Soft 0.5 1.34 0.12 1.30 0.11 1.27 0.10 0.78 0.06 0.57 0.03 1.46 0.11 1.35 0.13 1.31 0.13

Borda 1.58 0.14 1.63 0.14 1.63 0.13 0.81 0.06 1.53 0.08 1.47 0.12 1.34 0.13 1.32 0.13

Copeland 1.44 0.14 1.62 0.13 1.63 0.13 0.85 0.06 1.50 0.07 1.49 0.12 1.35 0.13 1.32 0.13

K = 10 d = 0.2 d = 0.3 d = 0.4 d = 0.47 c = 0.95 c = 0.75 c = 0.50 c = 0.25

Method SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ

Min regret 1.65 0.12 1.64 0.12 1.59 0.11 0.69 0.03 1.44 0.07 1.45 0.10 1.39 0.11 1.30 0.11

Soft 0.5 1.45 0.13 1.35 0.12 1.27 0.11 1.05 0.08 0.75 0.04 1.52 0.12 1.45 0.14 1.39 0.14

Borda 1.64 0.14 1.66 0.14 1.57 0.14 1.20 0.09 1.70 0.09 1.59 0.13 1.46 0.15 1.31 0.15

Copeland 1.63 0.14 1.66 0.14 1.58 0.14 1.23 0.10 1.71 0.09 1.62 0.13 1.46 0.15 1.32 0.15

K = 20 d = 0.2 d = 0.3 d = 0.4 d = 0.47 c = 0.95 c = 0.75 c = 0.50 c = 0.25

Method SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ SR CEQ

Min regret 1.66 0.13 1.64 0.12 1.56 0.11 0.82 0.03 1.45 0.07 1.47 0.10 1.42 0.11 1.33 0.11

Soft 0.5 1.51 0.14 1.47 0.13 1.47 0.13 1.31 0.11 1.08 0.06 1.67 0.14 1.52 0.15 1.48 0.15

Borda 1.66 0.15 1.65 0.15 1.62 0.14 1.50 0.12 1.84 0.09 1.63 0.15 1.53 0.16 1.44 0.16

Copeland 1.65 0.15 1.64 0.14 1.62 0.14 1.52 0.12 1.82 0.09 1.65 0.15 1.52 0.16 1.44 0.16

Table 4: Average values of Sharpe Ratio (SR) and Certainty Equivalent return (CEQ) obtained from portfolio simulation runs
computed by two robust optimization-based methods (Min regret; Soft 0.5) and two social choice-based methods (Borda; Copeland).
K ∈ {5, 10, 20} indicates the number of views. The average is taken over the values of SR (CEQ) obtained for each fixed value of
the Kendall-Tau distance d or the level of confidence in the views c while varying the other parameter in the whole range of values,
respectively: d ∈ {0.2, 0.3, 0.4, 0.47}, c ∈ {0.95, 0.75, 0.50, 0.25}. For each of the 48 combinations of parameters c, d and K, solid boxes
give the method with the highest value for SR (CEQ), while dashed boxes mark those methods deviating from the optimum by less
than 1 percent. Panel A (B) shows results for 38 (76) stocks in the EURO STOXX 50 (S&P 100). Sample period: January 1999 to
December 2021. Source: Refinitiv Datastream.
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6. Conclusions

While it is recognized in practice that relative rankings of future asset
returns are easier to generate and generally more reliable than estimates of
absolute returns, research on portfolio theory concerning this topic is rather
modest. Moreover, portfolio allocation decisions are increasingly made by
teams requiring compromises among several different views. This effect has
not yet been taken into account in the portfolio optimization literature.

In this paper we propose two general approaches that allow the integra-
tion of multiple and potentially divergent views on the ranking of expected
future stock returns in mean-variance (MV) portfolio optimization using the
parametric Black-Litterman-framework (BL). While methods from group
(I) first generate an estimator of expected returns for each individual view
and then process all these estimators in a robust MV portfolio optimiza-
tion framework, the methods based on social choice theory (group (II)) first
aggregate all orderings into one single consensus view which subsequently
enters MV optimization. We are not aware of any previous literature that
has combined social choice theory with MV portfolio optimization in the BL
framework.

Applying long-term in-sample analyses to stocks included in one of two
broad stock indices and differentiating the views in terms of (i) the level
of relevant information they contain, (ii) the level of confidence in the cor-
rectness of each generated view, and (iii) the number of views an investor
considers in his/her portfolio decision, we find that portfolios built upon
our proposed social choice methods (group (II)) clearly outperform portfo-
lios based on robust optimization methods. We therefore recommend that if
multiple views are to be considered in the portfolio allocation process, these
views should be aggregated into a single view in a first step. Subsequently,
this view can be used to derive a quantitative estimator for the posterior
distribution of expected stock returns by applying the method proposed in
Çela et al. (2021), which allows a qualitative view to be integrated into the
BL model. Eventually, MVO can be applied to this extended BL estimator
of expected returns.

Since we are (to the best of our knowledge) the first to combine methods
from social choice theory with portfolio optimization, a number of questions
arises for future research. As a generalization of our ordinal framework, we
might consider views represented by partial orders. The extended BL model
from Çela et al. (2021) could process partial orders as input, which could
then be used as inputs to the robust optimization approaches. However,
aggregation of partial orders is typically not studied in the context of social
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Panel A: Selected constituents of EURO STOXX 50

Method Sharpe Ratio SR Certainty-Equivalent return CEQ

Min regret 6 0
Soft 0.5 16 3

Borda 30 41

Copeland 18 32

Panel B: Selected constituents of S&P 100

Method Sharpe Ratio SR Certainty-Equivalent return CEQ

Min regret 17 0
Soft 0.5 11 3

Borda 18 38

Copeland 19 35

Table 5: Number of wins for selected methods of aggregating qualitative views. The num-
bers are aggregated across three different levels for the number of views K ∈ {5, 10, 20}.
The input views are total orders of assets with a Kendall tau distance d to the correct
order of returns: d ∈ {0.2, 0.3, 0.4, 0.47}. c ∈ {0.95, 0.75, 0.50, 0.25} is the parameter rep-
resenting the confidence in the views. Thus, 48 portfolio simulation runs are performed for
each method and the maximum achievable number of wins per method is 48. Results are
counted as wins if they deviate from the optimum by less than 1 percent. Solid (dashed)
boxes give the highest (second highest) number of total wins within a parameter setting.
Panel A (B) shows results for 38 (76) stocks in the EURO STOXX 50 (S&P 100). Sample
period: January 1999 to December 2021. Source: Refinitiv Datastream.

choice methods. A further extension could be the combination of qualitative
and quantitative information. Clearly, this would be straightforward for
robust portfolio optimization methods, after “translating” information of
both types into return estimators. Exploiting the potential of social choice
methods for such a setting seems to be far less obvious.

As a consequence of our work for practical decision making on asset
allocations we would recommend practitioners to take a fresh view at the
process of finding consensus between differing opinions (e.g., within an in-
vestment committee). It is well-known that personal relations, hierarchies
and anticipation of expected behaviour have a notable influence on the out-
come of a group decision. We propose to use the tools of robust optimization
and social choice theory to formalize and objectify the consensus building
process for decisions involving ordered preferences in portfolio optimization.
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