
Towards a Secure SCRUM Process for
Agile Web Application Development

Patrik Maier
Institute of Applied Information
Processing and Communications

University of Technology
Graz, Austria

patrik.maier@student.tugraz.at

Zhendong Ma
Center for Digital Safety & Security

Austrian Institute of Technology
Vienna, Austria

zhendong.ma@ait.ac.at

Roderick Bloem
Institute of Applied Information
Processing and Communications

University of Technology
Graz, Austria

roderick.bloem@iaik.tugraz.at

ABSTRACT
Agile development such as Scrum and Extreme Programming de-
liver so�ware in short iterations for quick response to rapid busi-
ness requirement and market changes. However, established secure
so�ware development methodologies are mostly based on linear
models such as waterfall and V-model, making them unsuitable for
direct application in an agile environment. �is paper presents a
proposal for integrating security activities into Scrum process for
developing secure Web applications. We identify gaps in existing
approaches to secure agile development and analyze established
security engineering activities. We then adapt these activities and
orchestrate them into Scrum development process to achieve both
security and agility. Our proposal is evaluated by a Scrum team
developing commercial JAVA EE applications in an opinion survey.

KEYWORDS
secure Scrum, agile development, Secure Development Lifecycle
(SDL), Web application security
ACM Reference format:
Patrik Maier, Zhendong Ma, and Roderick Bloem. 2017. Towards a Secure
SCRUM Process for
Agile Web Application Development. In Proceedings of ARES ’17, Reggio
Calabria, Italy, August 29-September 01, 2017, 8 pages.
DOI: 10.1145/3098954.3103171

1 INTRODUCTION
Agile so�ware development advocates short iteration cycles, early
delivery, and incremental so�ware development to enable so�ware
projects to quickly react to changes in business requirements [4].
It is fundamentally di�erent from traditional linear development
models such as waterfall and the V-model. Scrum is a framework
of practices for agile development, in which so�ware is incremen-
tally implemented, tested, reviewed, and shipped in Sprints, usually
lasted for 30 consecutive calendar days or less. Due to dynamic cus-
tomer needs and the pressure on time-to-market, agile development
is used extensively in Web application development.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ARES ’17, Reggio Calabria, Italy
© 2017 ACM. 978-1-4503-5257-4/17/08. . .$15.00
DOI: 10.1145/3098954.3103171

However, Web application has a large a�ack surface and is a
popular target of remote a�acks on the Internet. Statistically they
exhibit a track record of high number of vulnerabilities and inci-
dents in the past [14]. Agile development makes Web application
security even more challenging. Many established so�ware assur-
ance practices [5, 7, 9] are based on linear development models. �e
identi�cation of threats and security requirements and the creation
of secure so�ware architectures all require a considerable amount of
time, which contradicts with the principle of agile development. In
an agile development, so�ware is implemented in increments. It ac-
cepts the fact that requirements will o�en change and hence avoids
time-consuming planning phase. It also minimizes the e�ort on
documentation and modeling. �e “agile” practices are not totally
compatible with traditional so�ware security practices emphasizing
on careful planning, thorough analysis, and iterative design and
development. Hence the main challenge of achieving Web security
in Scrum process is to balance the e�ciency and dynamics of agile
development with security with appropriate cost-e�ectiveness.

Several approaches have been proposed in the past to address
secure Web application development in an agile environment, es-
pecially for Scrum [18]. A majority of existing work focus on
integrating security activities into the development process or ex-
tending Scrum activities and artifacts to cover security concerns.
Although Web security in Scrum is a multifaceted problem that
requires solutions from many aspects, we argue that a low hanging
fruit is a secure development process that can be readily integrated
into existing work�ow of a development team in so�ware produc-
tion. In this paper, we propose a secure Scrum process for Web
application development. Speci�cally,

• we propose a secure Scrum process that maps and inte-
grates security engineering practices from the ISO standard
Systems Security Engineering – Capability Maturity Model
(SSE-CMM), originally designed for linear development;

• we propose an agile risk analysis method that balances
the agility and e�ectiveness of security analysis in agile
development;

• and we evaluate our approach with developers who use
Scrum on a daily basis for commercial so�ware.

Our focus is on Web application, mainly because agile method
is widely used in Web development. Another reason is that we
have the possibility to evaluate our approach with a Scrum team
developing commercial Web applications. We use OWASP top 10
security risks [15] as a benchmark for Web application security.
�e goal is to reduce vulnerabilities and security bugs in Web appli-
cations developed in Scrum process. In the following, Sec.2 gives

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy P. Maier et al.

background information about Scrum followed by a discussion of
related work in Sec.3. Sec.4 presents our secure Scrum process and
Sec.5 evaluates our approach, followed by the conclusion in Sec.6.

2 OVERVIEW OF SCRUM
Scrum [18] is an agile so�ware development process. A Scrum team
consists of a product owner, a Scrum master, and a development
team. �e product owner de�nes the objectives and requirements
of the project and the release plan. A product backlog is used to
include all de�ned functional and nonfunctional requirements. �e
Scrum master helps the development team to follow the Scrum
practices and provides coordination between the product owner
and the development team. A development team ideally consists of
three to nine people, with the role of implementing the so�ware.
All members of a team are cross-functional and equal, i.e. no strict
roles such as testers or designers exist. Everyone within the team
can conduct so�ware design, implementation, and testing.

So�ware is incrementally implemented in Sprint, initiated by a
Sprint planning. It is divided into two parts. In the �rst part, the
product owner and the development team de�ne the most impor-
tant requirements that will be turned into functionality in a single
Sprint. In the second part, the development team identi�es the
tasks necessary to transform the requirements into functionalities
and plans how to actually achieve it. �e result is documented
in a Sprint backlog. Every day in a Sprint, the development team
holds a daily Scrum meeting that takes no more than 15 minutes
to exchange and discuss progresses and problems. New items in
the product backlog can be created in product backlog re�nement
session, held between the product owner and the development
team. �e session can also be used to re�ne the items already in
the product backlog in more details. �e time spent on product
backlog re�nement should not exceed 10% of the capacity of the
development team. A Sprint review meeting is held at the end of
the Sprint. �e increment implementation is assessed according
to the Sprint goals de�ned in the backlog. All items in the sprint
backlog should be completed at the end of a Sprint. Completeness is
de�ned by the “De�nition of Done”, which is a list of requirements
to be met for the so�ware increment. Items that do not obtain the
status of “De�nition of Done” are returned to the product backlog
and re-prioritized.

User stories [2] are commonly used in Scrum practice. A user
story consists of a one sentence summary of the business value
and several acceptance criteria, which are wri�en on a physical
form, such as a sticky note. A development team de�nes individ-
ual so�ware increments in user stories together with its customer
or the product owner. For de�ning a user story, the Independent,
Negotiable, Valuable, Estimable, Small, and Testable (INVEST) [1]
principle is used. A user story must ful�ll the “De�nition of Ready”
(i.e. a list of criteria to be met before a user story becomes immedi-
ately actionable) before it can be selected for a Sprint planning for
later implementation. A Scrum release plan describes the plan for
multiple Sprints. It is a list of requirements or user stories which
should be shipped in a release.

3 RELATEDWORK
Existing work mainly focuses on adding security activities and tech-
niques into agile development process or extending agile activities
or artifacts to cover security concerns. For example, in extreme
programming (XP), an XP team must follow development practices
such as simple design, testing, re-factoring, metaphor, collective
ownership, coding standard and pair programming. Wäyrynen et
al. [22] analyzed XP’s suitability for developing secure so�ware and
used the SSE-CMM as a checklist for evaluating which practices
are already taken into account. �eir analysis shows that XP lacks
support for the assessment of security risks and speci�cation of
security needs because security requirements are non-functional,
which cannot be easily broken down into estimable tasks. �ere-
fore, security experts need to be included in XP for risk assessment
and for pair programming with the development team. Microso�
extends its Secure Development Lifecycle (SDL) to cover agile de-
velopment [13]. Although it has the potential to become another de
facto industry standard, at the currently form it is only a collection
of best practices recommendations.

User stories are a type of artifacts used in Scrum to de�ne so�-
ware requirements and increments. Several approaches have pro-
posed to use user stories for security in Scrum. Asthana et al. [3]
proposed to use security-related user stories to identify security
threats and de�ne security requirements in security-related user
story templates. �e templates can be used for security require-
ments which are then divided into small manageable tasks. Tuuli
et al. [19] also proposed that a product owner should write speci�c
security-related user stories with the help of security-related user
story templates. �ese stories are then implemented by the develop-
ment team similar to ordinary functional ones. From a development
process point of view, such an approach has the advantage of eas-
ily integrating security requirements into current activities that
the developers are familiar with. Pohl and Hof [17] extended this
approach in which security concerns of a functional user story is
formulated as a security-related user story, misuse story, or abuse
story. �e concerns are linked to corresponding functional user
stories in the product backlog. Hence, security concerns of a func-
tional user story become product backlog items and are linked to
functional user stories. “De�nition of Done” is required to include
the veri�cation of security concerns. A new backlog item covering
the veri�cation part is added to the product backlog if veri�cation
fails.

Several techniques to replace time-consuming security analysis
have been proposed. Vähä-Sipilä [21] proposed to use generic
“security story” templates and threat modeling to identify abuse
cases and threats. �e requirements are then broken down into
estimable tasks and added to the product backlog. �reat modeling
and other security tasks are performed in Sprints and added as
backlog tasks in order to allow a product owner to measure costs.

4 SECURE SCRUM PROCESS
4.1 Methodology
We aim at designing a secure Scrum process to achieve both agility
and security in Web application development. Assuming that most
security activities will introduce overhead in terms of time and
additional human resource, our consideration hence focuses on

Towards a Secure SCRUM Process for
Agile Web Application Development ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

what type of security activities are essential to security, what se-
curity practices brings the most bene�t with the least overhead,
and whether we can minimize the overhead introduced by these
activities.

Inspired by [22], we use the processes described in SSE-CMM [7]
as a baseline to select and integrate a subset of the security activities
for Scrum. SSE-CMM is an ISO/IEC standard for secure so�ware
development. It introduces security engineering practices into the
development lifecycle and describes how to evaluate the capability
level of such practices. We regard it as a comprehensive collection
of security engineering activities to date. SSE-CMM organizes
best practice security activities into 11 process areas. In order
to select the security activities with the most cost-bene�t in the
context of Scrum, we analyze the existing security activities given in
SSE-CMM and cross-check them with additional well-established
secure so�ware development methodologies such as NIST 800-
64 [9], Security Requirements Engineering Process (SREP) [12],
Cigital Touchpoint [10], and Microso� SDL [5] to identify common
denominators. Based on the analysis, we propose a secure Scrum
process that integrates security-related activities, tools, and quality
gates. In addition, risk analysis is an essential security activity. To
reduce the overhead introduced by traditional risk analysis method,
we design an agile risk analysis method to be an integral part of
the secure Scrum process. A detailed discussion of these activities
is given in Sec. 4.3.

4.2 Analysis of agility of existing security
engineering activities

�e objective of the analysis is to identify speci�c activities, meth-
ods, tools, and techniques that can be integrated into a secure Scrum
process. �ese security activities are conducted in the phases of se-
curity requirement speci�cation, so�ware design, secure so�ware
implementation, and veri�cation.

We adopt the criteria of agility given in [8], which includes sim-
plicity, free of modeling and documentation, tolerant to requirement
changes, minimal speed of execution, people oriented, informality,
iterative, and high �exibility. �e original de�nition is abstract.
We extend the criteria with more details. For example, “simplicity”
for us means to ask “what kind of security expertise must the per-
son have in order to complete it in an e�ective way?”, “tolerant to
requirement changes” means “is it necessary to wait for the comple-
tion of other activities in order to be able to complete an activity?”
and ”how much has to be redone on small or medium requirement
changes?” We interpret “high �exibility” as “is it possible to skip
some steps without being ine�ective, due to, for example, time
reasons? Can these steps be replaced by other ones which are more
e�cient? Should all steps be performed strictly as described to be
e�ective?”

To quantitatively measure the agility of each of the activities, we
de�ne a metrics in which each aforementioned element of agility
is further given a value in the scale from 0 to 5. For example, for
“simplicity”, 0 means the least simple and 5 means the most simple.
We assume it will take on average 2 weeks to implement a user
story in Scrum sprint. Hence 0 for “speed of execution” means it
will last for the whole Sprint, and 5 means that it will only last
1-2 hours. Since there are 8 elements, the highest score an activity

can get is 5 × 8 = 40. We arbitrarily de�ne if an activity receives
more than 21 points (above 50%) it is “agile compatible”. We also
regard an activity to “agile friendly” if it receives more than 26
points (above 67%). Note that the decision on the cut-o� values is
intended to gain relative measures of agility.

We review the security activities speci�ed in NIST 800-64, SREP,
Cigital Touchpoint, and Microso� SDL and evaluate them against
the 8 elements of agility. Our evaluation identi�es 7 activities that
have the scores quali�ed to be “agile friendly”, i.e. security require-
ments analysis, role matrix, static analysis, dynamic analysis, code
review, initiate security planning, and conduct testing. Moreover,
we also identi�ed another 7 activities that quali�ed to be “agile com-
patible”, i.e. a�ack surface analysis, abuse cases, penetration testing,
critical assets, repository improvement, categorize information sys-
tem, and assess privacy impact. Interested readers are referred
to the corresponding original documents for detailed background
information.

4.3 A proposal for secure Scrum process
�e secure Scrum process is a collection of security activities orga-
nized in a balanced way for both security and agility. For security,
our rationale is to integrate the security activities identi�ed as “ag-
ile”. Our �rst step is to group these activities into requirement,
design, implementation and veri�cation phase similar to a waterfall
model. �en we adapt these activities to be used in the secure
Scrum process. A description of our adaptation of these security
activities is given below.

4.3.1 Requirement. In Initiate Security Planning, the so�ware
company discusses with the stakeholders of the project about secu-
rity policies and high-level security requirements. Security visions
and roles are de�ned. �e participants should obtain a basic knowl-
edge of security expectations. �e meeting should be documented
and a provisional schedule and milestones should be de�ned. �e
goal ofAgile Risk Analysis: External Dependencies is to de�ne the
deployment environment and security assumptions. Security as-
sumptions should be linked to corresponding security-related user
stories. Security Requirement Analysis identi�es security require-
ments and documents them in the security section of the user stories
or epics (i.e. a work that takes longer than a week or a full Sprint
to complete). Furthermore, possible a�ack scenarios can be added
to the user stories. Note that it is assumed that not all security re-
quirements and a�ack scenarios can be determined in this stage. It
obtains a high-level understanding of security requirements. Secu-
rity requirements are kept as acceptance criteria in functional user
stories. Agile Risk Analysis: Identify Trust Level identi�es all users
who have access rights to the application. It also creates a�acker
pro�les and establishes a high-level understanding of application
access. Agile Risk Analysis: Identify Assets lists all assets categorized
by trust levels. �e information is stored with their impact levels.
Agile Risk Analysis: Determine Entry Points identi�es unnecessary
user accesses to the assets described in the user story.

4.3.2 Design. Agile Risk Analysis: Identify �reats identi�es
concrete threats in the context of a speci�c user story. High-
level threats identi�ed in previous steps are analyzed to determine
whether they are speci�c enough for a story. For each identi�ed

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy P. Maier et al.

threat, a security-related user story and abuse cases are de�ned
and a�ached to the functional user story. In Agile Risk Analysis:
Ranking of �reats with DREAD, the results are presented to the
team in another product backlog re�nement meeting. �e product
owner should discuss with the whole team about the impact of
each threat. �e Damage potential, Reproducibility, Exploitability,
A�ected users, Discoverability (DREAD) [11] method can be used
for ranking threats. If the ranking cannot be completed for a user
story, it will not obtain a “De�nition of Ready”. Hence, the user
story has to be re�ned again in another product backlog re�nement
meeting. In Agile Risk Analysis: Mitigation Strategies, security con-
trols are chosen to each threat as mitigation strategies in a product
backlog re�nement meeting and documented in the corresponding
security-related user stories.

4.3.3 Implementation. In Document Security Controls, the devel-
opers tailor the high-level security controls to �t for a speci�c user
story. �ey describe the reason for the design decision for a speci�c
security control in the corresponding security-related user story.
�e documentation should be a short formal description. Static Code
Analysis requires each developer to perform security vulnerability
scans with static code analysis tools over their code. If issues are
found in the code, a security bug is immediately reported to a bug
tracking system, such as Jira. Dynamic Code Analysis uses approved
dynamic code analysis tool for frequently testing of the so�ware.
We recommend Pair Programming for security-critical so�ware
components, i.e. one developer writes the code whereby the other
one looks for coding failures or security �aws at the same time. It
means that at lease on developer has su�cient security expertise
to recognize security �aws. In every Sprint, Dependency Checker
tools are used in order to check if libraries contain publicly-known
security vulnerabilities. In case of insecure libraries, a security bug
is reported to a bug tracking system. If libraries with known issues
are used, it is documented why it is not possible to use another
library or whether the known issues are relevant.

4.3.4 Verification. Veri�cation should be risk-based. Agile risk
analysis should be used to prioritize the de�nition of test cases
and reviews according to the risks. In Pair Penetration Testing, a
quality engineer with the developer who generated the code should
test the program using a black box Web vulnerability scanner. If
possible, only the new implemented functionality should be tested
with this tool. If the result contains false positives, all false positives
should be documented and explained why they are not security
�aws. �e result is used to speed up testing in penetration testing.
In Penetration Testing, a penetration tester tests various a�ack sce-
narios either manually or automatically with all-in-one penetration
testing tools. �e penetration tester should use the list of false
positives from the previous activity to avoid exploiting the same
vulnerabilities. Issues detected are prioritized with DREAD and
handled in the activity Agile Risk Analysis: Mitigation Strategies.
In Code Review, a security tester performs a security code review
with the developer for the user story. In this review they manually
review the source code to identify security �aws.

Besides these activity groups, quality gates are used in the de-
velopment process to describe milestones and to evaluate whether
all obligatory criteria are ful�lled as the condition for proceeding
to the next phase. �ality gates are placed between phases. As

an existing mechanism in Scrum for quality control, it provides an
opportunity for security-related reviews.

4.3.5 Secure Scrum.
Fig. 1 shows the components of a secure Scrum process and

Fig. 2 gives an overview of our proposed secure Scrum process. �e
process is based on Scrum speci�cation and the aforementioned
security activities that we regard as agile enough to be integrated
into the process. In the �gure, standard Scrum practices (shown as
green boxes) are extended with security activities (highlighted in
red rectangles). We adopt the principle of Scrum release planning,
which is a date- or feature-driven plan for multiple Sprints including
a list of requirements or user stories to be shipped in a release [6].
We assume that a so�ware company ships around four releases
in a year. Each release consists of four Sprints and each one is
performed in the time-span of two weeks. Note that in reality,
there will be many variations in these numbers from company to
company.

Figure 1: Components of secure Scrum process

We assume that a security specialist is needed to cooperate with
the customer, product owner and the development team for security
requirement analysis.

Besides the activities already described, addition considerations
in the secure Scrum process are given below.

• Requirement. In current release n, the requirement phase
of the next release n + 1 starts. In other words, in the
last two Sprints of a release, the epics and user stories of
the next release are planned. At the same time, high-level
security requirements, trust levels, possible assets, and
their entry points are identi�ed. �e results are included
in a security section of the epics or user stories of release
n + 1.

• Design. In the design phase, security-related technical user
stories are identi�ed. Product backlog re�nement meetings

Towards a Secure SCRUM Process for
Agile Web Application Development ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

Figure 2: Secure Scrum process

are held in Scrum to evaluate whether user stories or epics
have been changed so they can be re�ned. Security re-
quirements are considered in these meetings. New threats
are identi�ed when a functional user story is implemented.
�ese threats are then formulated into security-related user
stories. �e quality gate “De�nition of Ready” makes it
mandatory. �us only if all activities of the requirement
and design phase for a user story have been completed,
this user story is allowed to be added to the Sprint backlog
and the implementation of it can be started.

• Implementation. It is similar to normal Scrum. A�er user
stories have been added to a Scrum team�s Sprint backlog,
the stories are implemented. Security control are added
to the Scrum process in the context of a user story and
documented in the corresponding security-related user
story. If no security controls have been developed, the
reasons are documented in the corresponding security-
related user story.

• Veri�cation. Stories are tested with pair penetration testing,
code reviews, whitebox security testing, and penetration
testing. Security testing are based on the outcome of the
agile risk analysis to prioritize the test cases and reviews
with regard to their risks. A�er these activities have been
successfully performed, the “De�nition of Done” is ful�lled
by the user story or epic. A Scrum retrospective meeting is
held together with the Sprint review. A�er these meetings,
user stories which obtained the “De�nition of Done” are
shipped to the customer just like in normal Scrum.

In order to integrate security requirements in a Scrum process, it
is necessary to de�ne and document them. We adopt the security-
related user story templates from SAFECode [3]. However, a devel-
opment team should re�ne the templates for its speci�c functional
user stories. Each of the security-related user stories receives a
security debt value and is added to the Product Backlog. A debt
value is a numeric value used as a mechanism to force and track
a development team to implement certain security requirements
speci�ed in the security-related user stories. If a team does not
develop the security user stories in a Sprint, the security debt value
of these stories is added to the teams security debt. A security debt
threshold is arbitrary de�ned by the team. If the debt value exceeds
a certain threshold, the team must develop these security-related
user stories in a separate Sprint. Security-critical user stories can
also be added as an acceptance criteria. References should be added
to link security-related user story to corresponding functional user
stories as suggested in [17].

4.4 Agile risk analysis
Most existing risk analysis and threat modeling methodologies were
originally developed for linear models and lack a certain degree of
“agile friendliness. Nevertheless, security risk analysis and threat
modeling is essential for so�ware security. �erefore, we adapt the
OWASP Application �reat Modeling (OATM) [16] and propose a
risk analysis methodology tailored to agile development. We use
OATM as a reference and remove and modify some of the activities,
and replace some steps with agile friendly activities. �e result
is based on the agile friendly activities whereas it still covers the

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy P. Maier et al.

basic process areas in SSE-CMM for secure development. Speci�-
cally, the PAs considered are Assess Impact, Assess Security Risk,
Assess �reat, and Assess Vulnerability. It consists of the following
activities: Abuse cases, Role Matrix, Critical Assets, A�ack Surface
Analysis/Reduction, Categorize Information System. A description
of the activities are given below.

• External dependencies and security assumptions- De�ne
security assumptions and a�ach a link in the user stories.
Use so�ware dependency checker in every Sprint to �nd
vulnerabilities in libraries that are used in a project.

• Asset. Identify the assets in a so�ware and the user with
access to them. A comprehensive identi�cation of asset is
based on either interviews with asset owners and stake-
holders or functional requirements. Importance of assets
can be ranked based on existing impact assessment ma-
trix [20]. A table or database can be used to store and track
all assets depending on the size of the project.

• Trust levels. Identify trust level of each of the user in which
a matrix is used to clear identify which user is allowed for
what kind of access (create, read, write, or execute) to each
asset. It should be linked to user stories too.

• Entry Points. Identify entry points of potential a�acks by
using a�ack surface analysis activity [5].

• �reat identi�cation. Brainstorming instead of threat anal-
ysis based on data �ow diagram (DFD) typically used in
�reat modeling is used. �reats are identify using security-
related user story templates from Safecode [3]. �ese tem-
plates were created to support the formalization of security
requirements in an agile development process. �e sim-
pli�cation should signi�cantly improve the agility of this
step. Speci�c a�ack scenarios are mapped to abuse cases
with the help of the OWASP Top10 document. �ese abuse
cases should be formulated either formally or with the help
of diagrams, which can be developed fast and should be
a�ached to the corresponding security-related user story.
�is means that a security-related user story can contain
one or more abuse cases. �e goal is to identify further
threats and to support the writing of speci�c test cases.

• �reat ranking. Ranking of threats using Damage potential,
Reproducibility, Exploitability, A�ected users, Discover-
ability (DREAD).

• Mitigation strategy. Design and implement mitigation fol-
lowing a set of strategies such as do nothing, remove the
feature, turn o� the feature, warn the user, implement
security controls, or transfer the risks [16].

5 EVALUATION
We evaluate the secure Scrum proposal in two aspects: 1) the agility
and cost-e�ectiveness of our proposal in terms of additional time
to normal Scrum process, 2) the level of security it provides.

5.1 Evaluation of agility and cost-e�ectiveness
For the �rst aspect, we conducted a survey on a group of employees
at a medium size so�ware company using a questionnaire. �e
company develops commercial Java EE web applications for large
corporate customers and follows the Scrum process. We explained

the interviewee in an one hour presentation of the whole secure
Scrum process and described each of its activities. A�er the pre-
sentation, we ask them to �ll out a questionnaire on how agile and
cost-e�ective they think each activity is. We also asked them how
much time they would invest for completing each activity in the
context of a user story. A group of ten people with mixed roles are
involved in the survey, which includes four developers, two Scrum
masters, one so�ware architect, one project manager, one quality
manager, and one product owner. �e interviewees are selected
based on the criterion that they are able to estimate the time, cost,
and agility of a Scrum process from their speci�c perspectives.

Fig. 3 shows the median scores of all participants’ answers. �e
time column displays how much time in hours the participants
would spent in average to complete an activity. Note that the es-
timation on pair programming time is skipped, because we think
that it is not possible for them to estimate the additional e�ort. �e
cost and agility columns illustrate the participants’ median scores
in regard to cost and agility to average out the subjective opinions.
�e maximum value in these columns is �ve, which represents that
all participants have agreed that the activity is very agile. However,
in contrast, if the value is one, all participants hold the belief that
this activity is not agile-friendly. We use the following scale:

(1–1.49=very low, 1.5–2.49=low, 2.5–3.49=medium, 3.5–4.49=high,
4.5–5 = very high)

In summary, based on the evaluation of a group of develop-
ers, Scrum masters, so�ware architects, project managers, quality
managers, and product owners on the scale of “very low”, “low”,
“medium”, “high”, and “very high”, our secure Scrum process is
regarded as “medium” agile and “medium” cost-e�ective.

Figure 3: Evaluation results on estimation of agility and cost-
e�ectiveness

Furthermore, most participants agreed that security-related user
stories should be added as product and Scrum backlog items.

5.2 Evaluation of security maturity level
�e proposed secure Scrum process should be aligned with the
SSE-CMM as a baseline for secure development process. In our
approach, the secure Scrum process should take the Process Areas
(PAs) of SSE-CMM into account. Fig. 4 illustrates how the Secure
Scrum process handles the di�erent PAs. We exclude PA 01 and 08,
because they do not focus on the implementation and veri�cation
of secure so�ware. To coordinate security we use the events of

Towards a Secure SCRUM Process for
Agile Web Application Development ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

Scrum and the frequent face-to-face interactions (cf. Fig. 2). We
use our agile risk analysis to achieve the goals of PA 02-05. In
this methodology we identify threats and vulnerabilities of the
implemented so�ware, assess the impact on assets and calculate the
actual security risk with DREAD. Static- and dynamic code analysis
as well as code reviews detect further vulnerabilities. In order to
assure that the so�ware is really what the customer wants (part of
PA 06 and PA 10) in regard of security we involve the customer in
de�ning the security milestones in the “Initiate Security Planning
activity and in the “Security Requirement Analysis activity. In
this way, it is assured that the requirements re�ect the customers
wishes. In order to identify proper security control alternatives to
satisfy the security requirements de�ned (PA 09), we conduct our
agile risk analysis and use SAFECode’s security-related user story
templates, which list several tasks to be considered if a functionality
is implemented. In the “Document Security Controls activity we
select speci�c security controls and implement them. Finally, in
order to assure that the selected security controls actually ful�ll
the security requirements de�ned (PA 06 and PA 11) we perform
Pair Penetration Testing, Penetration Testing, Static Code Analysis,
Code Review, and whitebox security testing. Additionally, we add
one Security Risk Specialist and a Security Tester to each Scrum
team and involve them in several security engineering activities in
order to spread security knowledge among all developers.

6 CONCLUSION
Agile development such as Scrum is very popular among Web ap-
plication developers. However, many existing secure development
methodologies rely on time-consuming security practices, which
contradicts the agile and incremental nature of Scrum. In this pa-
per, we proposed a secure Scrum process that integrates proven
secure development practices into agile Scrum process. We ana-
lyzed well-known secure development approaches and adapt the
security activities to �t into agile development. �e proposed se-
cure Scrum process has been evaluated by a group of so�ware
developers in an opinion survey. Our result shows that on the
scale of “very low”, “low”, “medium”, “high”, and “very high”, our
secure Scrum process is regarded as “medium” agile and “medium”
cost-e�ective. We align our secure Scrum process to the Process
Areas in Systems Security Engineering - Capability Maturity Model
(SSE-CMM) to ensure security. Our secure Scrum process covers all
desired process areas (PAs) of SSE-CMM. We also proposed an agile
risk analysis method as a trade-o� between agility and security for
threat identi�cation.

ACKNOWLEDGEMENT
�e research leading to this paper has received funding from the
H2020-ECSEL programme under the grant agreement no. 692474
(AMASS).

REFERENCES
[1] Agile Alliance. Invest. h�ps://www.agilealliance.org/glossary/invest/
[2] Agile Alliance. User Stories. h�ps://www.agilealliance.org/glossary/user-stories/
[3] Vishal Asthana, Izar Tarandach, Niall O’Donoghue, Bryan Sullivan, and Mikko

Saario. 2012. Practical Security Stories and Security Tasks for Agile Develop-
ment Environments. h�ps://www.safecode.org/publication/SAFECode Dev
Practices0211.pdf

Figure 4: Secure Scrum’s alignment to Process Areas of SSE-
CMM

[4] Barry Boehm and Richard Turner. 2005. Management challenges to implementing
agile processes in traditional development organizations. IEEE so�ware 22, 5
(2005), 30–39.

[5] Michael Howard and Steve Lipner. 2006. �e security development lifecycle: SDL,
a process for developing demonstrably more secure so�ware. Microso� Press.

[6] SCRUM institute. 2002. Scrum Release Planning. (2002). h�p://www.
scrum-institute.org/Release Planning.php

[7] ISO/IEC 21827:2008(en) 2008. Information technology – Security techniques –
Systems Security Engineering – Capability Maturity Model (SSE–CMM). (2008).

[8] Hossein Keramati and Seyed-Hassan Mirian-Hosseinabadi. 2008. Integrating so�-
ware development security activities with agile methodologies. In 2008 IEEE/ACS
International Conference on Computer Systems and Applications. IEEE, 749–754.

[9] Richard Kissel, Kevin Stine, Ma�hew Scholl, Hart Rossman, Jim Fahlsing, and
Jessica Gulick. 2008. Security Considerations in the System Development Life
Cycle. NIST SP 800-64 revision 2 (2008). DOI:h�p://dx.doi.org/10.6028/NIST.SP.
800-64r2

[10] Gary McGraw. 2006. So�ware Security: Building Security In. Vol. 1. Addison-
Wesley Professional.

[11] J.D. Meier, Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray Escamilla,
and Anandha Murukan. Improving Web Application Security: �reats and Coun-
termeasures. Microso� Press.

[12] Daniel Mellado, Eduardo Fernández-Medina, and Mario Pia�ini. 2007. A Common
Criteria Based Security Requirements Engineering Process for the Development

https://www.agilealliance.org/glossary/invest/
https://www.agilealliance.org/glossary/user-stories/
https://www.safecode.org/publication/SAFECode_Dev_Practices0211.pdf
https://www.safecode.org/publication/SAFECode_Dev_Practices0211.pdf
http://www.scrum-institute.org/Release_Planning.php
http://www.scrum-institute.org/Release_Planning.php
http://dx.doi.org/10.6028/NIST.SP.800-64r2
http://dx.doi.org/10.6028/NIST.SP.800-64r2

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy P. Maier et al.

of Secure Information Systems. Computer Standards & Interfaces 29, 2 (2007),
244–253. DOI:h�p://dx.doi.org/10.1016/j.csi.2006.04.002

[13] Microso�. 2012. SDL for Agile. (2012). h�ps://www.microso�.com/en-us/SDL/
Discover/sdlagile.aspx

[14] NIST. 2016. National Vulnerability Database. h�ps://nvd.nist.gov/
[15] OWASP. 2013. OWASP Top Ten Project. h�ps://www.owasp.org/index.php/

Category:OWASP Top Ten Project
[16] OWASP. 2015. Application �reat Modeling. h�ps://www.owasp.org/index.php/

Application �reat Modeling
[17] Christoph Pohl and Hans-Joachim Hof. 2015. Secure Scrum: Development of

Secure So�ware with Scrum. arXiv preprint arXiv:1507.02992 (2015).
[18] Ken Schwaber and Je� Sutherland. �e Scrum Guide. h�p://www.scrumguides.

org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf
[19] Tuuli Siiskonen, Camillo Särs, An�i Väh-Sipilä, and Ari Pietikäinen. 2014.

Generic Security User Stories. In Handbook of the Secure Agile So�ware De-
velopment Life Cycle, Pietikinen Pekka and Rning Juha (Eds.). University of Oulu,
Oulu, Chapter 2, 9–14.

[20] Kevin Stine, Rich Kissel, William C. Barker, Jim Fahlsing, and Gulick Jessica.
2008. Volume 1: Guide for Mapping Types of Information and Information
Systems to Security Categories. NIST SP 800-60 Volume 1 revision 1 (2008). DOI:
h�p://dx.doi.org/10.6028/NIST.SP.800-60v1r1

[21] An�i Vähä-Sipilä. 2010. Product Security Risk Management in Agile Product
Management. h�ps://owasp.org/images/c/c6/OWASP AppSec Research 2010
Agile Prod Sec Mgmt by Vaha-Sipila.pdf

[22] Jaana Wäyrynen, Marine Bodén, and Gustav Boström. Security Engineering and
eXtreme Programming: An Impossible Marriage?. In Extreme Programming and
Agile Methods - XP/Agile Universe 2004: 4th Conference on Extreme Programming
and Agile Methods (2004-08-15), Carmen Zannier, Hakan Erdogmus, and Lowell
Lindstrom (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 117–128. DOI:
h�p://dx.doi.org/10.1007/978-3-540-27777-4 12

http://dx.doi.org/10.1016/j.csi.2006.04.002
https://www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx
https://www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx
https://nvd.nist.gov/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Application_Threat_Modeling
https://www.owasp.org/index.php/Application_Threat_Modeling
http://www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf
http://www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf
http://dx.doi.org/10.6028/NIST.SP.800-60v1r1
https://owasp.org/images/c/c6/OWASP_AppSec_Research_2010_Agile_Prod_Sec_Mgmt_by_Vaha-Sipila.pdf
https://owasp.org/images/c/c6/OWASP_AppSec_Research_2010_Agile_Prod_Sec_Mgmt_by_Vaha-Sipila.pdf
http://dx.doi.org/10.1007/978-3-540-27777-4_12

	Abstract
	1 Introduction
	2 Overview of Scrum
	3 Related work
	4 Secure Scrum Process
	4.1 Methodology
	4.2 Analysis of agility of existing security engineering activities
	4.3 A proposal for secure Scrum process
	4.4 Agile risk analysis

	5 Evaluation
	5.1 Evaluation of agility and cost-effectiveness
	5.2 Evaluation of security maturity level

	6 Conclusion
	References

