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Abstract

Motivated by problems in functional data analysis, in this paper we prove the weak convergence of
normalized partial sums of dependent random functions exhibiting a Bernoulli shift structure.
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Functional data analysis in many cases requires central limit theorems and invariance
principles for partial sums of random functions. The case of independent summands is much
studied and well understood but the theory for the dependent case is less complete. In this
paper we study the important class of Bernoulli shift processes which are often used to model
econometric and financial data. Let X = {X i (t)}∞i=−∞

be a sequence of random functions, square
integrable on [0, 1], and let ∥ · ∥ denote the L2

[0, 1] norm. To lighten the notation we use f for
f (t) when it does not cause confusion. Throughout this paper we assume that

X forms a sequence of Bernoulli shifts, i.e. X j (t) = g(ϵ j (t), ϵ j−1(t), . . .) for some

nonrandom measurable function g : S∞
→ L2 and iid random functions ϵ j (t),
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−∞ < j < ∞, with values in a measurable space S, (1.1)

ϵ j (t) = ϵ j (t, ω) is jointly measurable in (t, ω) (−∞ < j < ∞), (1.2)

E X0(t) = 0 for all t, and E∥X0∥
2+δ < ∞ for some 0 < δ < 1, (1.3)

and

the sequence {Xn}
∞
n=−∞ can be approximated by ℓ-dependent sequences

{Xn,ℓ}
∞
n=−∞ in the sense that

∞
ℓ=1

(E∥Xn − Xn,ℓ∥
2+δ)1/κ < ∞ for some κ > 2 + δ,

where Xn,ℓ is defined by Xn,ℓ = g(ϵn, ϵn−1, . . . , ϵn−ℓ+1, ϵ
∗

n,ℓ),

ϵ∗

n,ℓ = (ϵ∗

n,ℓ,n−ℓ, ϵ
∗

n,ℓ,n−ℓ−1, . . .), where the ϵ∗

n,ℓ,k’s are independent copies of ϵ0,

independent of {ϵi , −∞ < i < ∞}. (1.4)

We note that assumption (1.1) implies that Xn is a stationary and ergodic sequence. Hörmann
and Kokoszka [19] call the processes satisfying (1.1)–(1.4) L2 m-decomposable processes.
The idea of approximating a stationary sequence with random variables which exhibit finite
dependence first appeared in [21] and is used frequently in the literature (cf. [3]). Aue et al. [1]
provide several examples when assumption (1.1)–(1.4) hold which include autoregressive,
moving average and linear processes in Hilbert spaces. Also, the non-linear functional ARCH(1)
model (cf. [18]) and bilinear models (cf. [19]) satisfy (1.4).

We show in Section 2 (cf. Lemma 2.2) that the series in

C(t, s) = E[X0(t)X0(s)] +

∞
ℓ=1

E[X0(t)Xℓ(s)] +

∞
ℓ=1

E[X0(s)Xℓ(t)] (1.5)

are convergent in L2. The function C(t, s) is positive definite, and therefore there exist λ1 ≥

λ2 ≥ · · · ≥ 0 and orthonormal functions φi (t), 0 ≤ t ≤ 1 satisfying

λiφi (t) =


C(t, s)φi (s)ds, 1 ≤ i < ∞, (1.6)

where


means
 1

0 . We define

Γ (x, t) =

∞
i=1

λ
1/2
i Wi (x)φi (t),

where Wi are independent and identically distributed Wiener processes (standard Brownian
motions). Clearly, Γ (x, t) is Gaussian. We show in Lemma 2.2 that


∞

ℓ=1 λℓ < ∞, and therefore

sup
0≤x≤1


Γ 2(x, t)dt < ∞ a.s.

Theorem 1.1. If assumption (1.1)–(1.4) hold, then for every N we can define a Gaussian process
ΓN (x, t) such that

{ΓN (x, t), 0 ≤ x, t ≤ 1}
D
={Γ (x, t), 0 ≤ x, t ≤ 1}
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and

sup
0≤x≤1


(SN (x, t) − ΓN (x, t))2dt = oP (1),

where

SN (x, t) =
1

N 1/2

⌊N x⌋
i=1

X i (t).

The proof of Theorem 1.1 is given in Section 2. The proof is based on a maximal inequality
which is given in Section 3 and is of interest in its own right.

There is a wide literature on the central limit theorem for sums of random processes in abstract
spaces. For limit theorems for sums of independent Banach space valued random variables we
refer to Ledoux and Talagrand (1991). For the central limit theory in the context of functional
data analysis we refer to the books of [4,20]. In the real valued case, the martingale approach to
weak dependence was developed by Gordin [16], Philipp and Stout [25] and Eberlein [14], and
by using such techniques [23,9] obtained central limit theorems for a large class of dependent
variables in Hilbert spaces. For some early influential results on invariance for sums of mixing
variables in Banach spaces we refer to [22,11,10]. These papers provide very sharp results, but
verifying mixing conditions is generally not easy and without additional continuity conditions,
even autoregressive (1) processes may fail to be strong mixing (cf. [5]). The weak dependence
concept of [13] (cf. also [8]) solves this difficulty, but so far this concept has not been extended
to variables in Hilbert spaces. Wu [27,28] proved several limit theorems for one-dimensional
stationary processes having a Bernoulli shift representation. Compared to classical mixing
conditions, Wu’s physical dependence conditions are easier to verify in concrete cases. Condition
(1.3) cannot be directly compared to the approximating martingale conditions of [27,28]. For
extensions to the Hilbert space case we refer to [19].

2. Proof of Theorem 1.1

The proof is based on three steps. We recall the definition of X i,m from (1.4). For every fixed
m, the sequence {X i,m} is m-dependent. According to our first lemma, the sums of the X i ’s can be
approximated with the sums of m-dependent variables. The second step is the approximation of
the infinite dimensional X i,m’s with finite dimensional variables (Lemma 2.4). Then the result in
Theorem 1.1 is established for finite dimensional m-dependent random functions (Lemma 2.6).

Lemma 2.1. If (1.1)–(1.4) hold, then for all x > 0 we have

lim
m→∞

lim sup
N→∞

P


max

1≤k≤N

1
√

N

 k
i=1

(X i − X i,m)

 > x


= 0. (2.1)

Proof. The proof of this lemma requires the maximal inequality of Theorem 3.2. Section 3 is
devoted to the proof of this result. Using Theorem 3.2, (2.1) is an immediate consequence of
Markov’s inequality. �

Define

Cm(t, s) = E[X0,m(t)X0,m(s)] +

m
i=1

E[X0,m(t)X i,m(s)] +

m
i=1

E[X0,m(s)X i,m(t)]. (2.2)
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We show in the following lemma that for every m the function Cm is square-integrable. Hence
there are λ1,m ≥ λ2,m ≥ · · · ≥ 0 and corresponding orthonormal functions φi,m, i = 1, 2, . . .

satisfying

λi,mφi,m(t) =


Cm(t, s)φi,m(s)ds, i = 1, 2, . . .

Lemma 2.2. If (1.1)–(1.4) hold, then we have
C2(t, s)dtds < ∞, (2.3)
C2

m(t, s)dtds < ∞ for all m ≥ 1, (2.4)

lim
m→∞


(C(t, s) − Cm(t, s))2dtds = 0, (2.5)

C(t, t)dt =

∞
k=1

λk < ∞, (2.6)


Cm(t, t)dt =

∞
k=1

λk,m < ∞ (2.7)

and

lim
m→∞


Cm(t, t)dt =


C(t, t)dt. (2.8)

Proof. Using the Cauchy–Schwarz inequality for expected values we get
(E[X0(t)X0(s)])

2dtds ≤


((E X2

0(t))
1/2(E X2

0(s))
1/2)2dtds

= (E∥X0∥
2)2 < ∞.

Recalling that X0 and X i,i are independent and both have 0 mean, we conclude first using the
triangle inequality and then the Cauchy–Schwarz inequality for expected values that

 
∞

i=1

E[X0(t)X i (s)]

2

dtds


1/2

=


 

∞
i=1

E[X0(t)(X i (s) − X i,i (s))]

2

dtds


1/2

≤

 
∞

i=1

E |X0(t)(X i (s) − X i,i (s))|

2

dtds

1/2

≤

∞
i=1

  
E |X0(t)(X i (s) − X i,i (s))|

2 dtds

1/2
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≤

∞
i=1

 
(E X2

0(t))
1/2(E(X i (s) − X i,i (s))

2)1/2
2

dtds

=


E X2

0(t)dt
∞

i=1


E(X i (s) − X i,i (s))

2ds

= E∥X0∥
2

∞
i=1

E∥X0 − X0,i∥
2

< ∞ (2.9)

on account of (1.4). This completes the proof of (2.3).
Since E X0,m(t)X0,m(s) = E X0(t)X0(s), in order to establish (2.4), it is enough to show that 

m
i=1

E[X0,m(t)X i,m(s)]

2

dtds < ∞.

It follows from the definition of X i,m that the vectors (X0,m, X i,m) and (X0, X i,m) have the same
distribution for all 1 ≤ i ≤ m. Also, (X i,m, X i,i ) has the same distribution as (X0, X0,i ), 1 ≤

i ≤ m. Hence following the arguments in (2.9) we get
 

m
i=1

|E X0,m(t)X i,m(s)|

2

dtds


1/2

=


  

m
i=1

|E X0(t)X i,m(s)|

2

dtds


1/2

≤ E∥X0∥
2

m
i=1


E(X i,m(s) − X i,i (s))

2ds

≤ E∥X0∥
2

∞
i=1

E∥X0 − X0,i∥
2

< ∞.

The proof of (2.4) is now complete. The arguments used above also prove (2.5).
Repeating the previous arguments we have

C(t, t)dt ≤


E X2

0(t)dt + 2
∞

i=1


|E[X0(t)X i (t)]|dt

=


E X2

0(t)dt + 2
∞

i=1


|E[X0(t)(X i (t) − X i,i (t))]|dt

=


E X2

0(t)dt + 2
∞

i=1


(E X2

0(t))
1/2(E[X i (t) − X i,i (t)]

2)1/2dt

≤ E∥X0∥
2
+ 2

∞
i=1


E X2

0(t)dt

1/2 
E[X i (t) − X i,i (t)]

2dt

1/2
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= E∥X0∥
2
+ 2(E∥X0∥

2)1/2
∞

i=1

(E∥X0 − X0,i∥
2)1/2

< ∞.

Observing that
C(t, t)dt =

∞
i=1

λi


φ2

i (t)dt =

∞
i=1

λi ,

the proof of (2.6) is complete. The same arguments can be used to establish (2.7). The relation
in (2.8) can be established along the lines of the proof of (2.5). �

By the Karhunen–Loéve expansion, we have that

X i,m(t) =

∞
ℓ=1

⟨X i,m, φℓ,m⟩φℓ,m(t). (2.10)

Define

X i,m,K (t) =

K
ℓ=1

⟨X i,m, φℓ,m⟩φℓ,m(t) (2.11)

to be the partial sums of the series in (2.10), and

X̄ i,m,K (t) = X i,m(t) − X i,m,K (t) =

∞
ℓ=K+1

⟨X i,m, φℓ,m⟩φℓ,m(t). (2.12)

Lemma 2.3. If {Zi }
N
i=1 are independent L2 valued random variables such that

E Z1(t) = 0 and E∥Z1∥
2 < ∞, (2.13)

then for all x > 0 we have that

P

 max
1≤k≤N

 k
i=1

Zi


2

> x

 ≤
1
x

E

 N
i=1

Zi


2

. (2.14)

Proof. Let Fk be the sigma algebra generated by the random variables {Z j }
k
j=1. By assumption

(2.13) and the independence of the Zi ’s we have that

E

k+1
i=1

Zi


2
Fk

 =

 k
i=1

Zi


2

+ E∥Zk+1∥
2

≥

 k
i=1

Zi


2

.

Therefore
k

i=1 Zi

2
∞

k=1
is a non-negative submartingale with respect to the filtration

{Fk}
∞

k=1. If we define

A =

ω : max
1≤k≤N

 k
i=1

Zi


2

> x

 ,
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then it follows from Doob’s maximal inequality [6, p. 247] that

x P

 max
1≤k≤N

 k
i=1

Zi


2

> x

 ≤ E

 N
i=1

Zi


2

IA


≤ E

 N
i=1

Zi


2

,

which completes the proof. �

Lemma 2.4. If (1.1)–(1.4) hold, then for all x > 0,

lim
K→∞

lim sup
N→∞

P


max

1≤k≤N

 1
√

N

k
i=1

X̄ i,m,K

 > x


= 0. (2.15)

Proof. Define Qk( j) = {i : 1 ≤ i ≤ k, i = j (mod m)} for j = 0, 1, . . . , m−1, and all positive
integers k. It is then clear that

k
i=1

X̄ i,m,K =

m−1
j=0


i∈Qk ( j)

X̄ i,m,K .

We thus obtain by the triangle inequality that

P


max

1≤k≤N

 1
√

N

k
i=1

X̄ i,m,K

 > x


≤ P


m−1
j=0

max
1≤k≤N

 1
√

N


i∈Qk ( j)

X̄ i,m,K

 > x


.

It is therefore sufficient to show that for each fixed j ,

lim
K→∞

lim sup
N→∞

P


max

1≤k≤N

 1
√

N


i∈Qk ( j)

X̄ i,m,K

 > x


= 0.

By the definition of Qk( j), {X̄ i,m,K }i∈Qk ( j) is an iid sequence of random variables. So, by
applications of Lemma 2.3 and assumption (1.3), we have that

P

 max
1≤k≤N

 1
√

N


i∈Qk ( j)

X̄ i,m,K


2

> x

 ≤
1
x

E

 1
√

N


i∈QN ( j)

X̄ i,m,K


2

≤
1
x

E∥X̄2
0,m,K ∥

=
1
x

∞
ℓ=K+1

λℓ,m . (2.16)

Since the right hand side of (2.16) tends to zero as K tends to infinity independently of N , (2.15)
follows. �

‘Clearly, with k = ⌊N x⌋ we have

1
√

N

k
i=1

X i,m,K (t) =

K
j=1


1

√
N

⌊N x⌋
i=1

⟨X i,m, φ j,m⟩


φ j,m(t). (2.17)
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Lemma 2.5. If (1.1)–(1.4) hold, then the K dimensional random process
1

√
N

⌊N x⌋
i=1

⟨X i,m, φ1,m⟩, . . . ,
1

√
N

⌊N x⌋
i=1

⟨X i,m, φK ,m⟩



converges, as N → ∞, in D K
[0, 1] to

λ
1/2
1,m W1(x), . . . , λ

1/2
K ,m WK (x)


, (2.18)

where {Wi }
K
i=1 are independent, identically distributed Wiener processes.

Proof. A similar procedure as in Lemma 2.4 shows that for each j , 1
√

N

⌊N x⌋

i=1 ⟨X i,m, φ j,m⟩ can
be written as a sum of sums of independent and identically distributed random variables, and
thus, by Billingsley [3], it is tight. This implies that the K dimensional process

1
√

N

⌊N x⌋
i=1

⟨X i,m, φ1,m⟩, . . . ,
1

√
N

⌊N x⌋
i=1

⟨X i,m, φK ,m⟩


is tight, since it is tight in each coordinate. Furthermore, the Cramér–Wold device and the central
limit theorem for m-dependent random variables (cf. [7, p. 119]) shows that the finite dimensional
distributions of the vector process converge to the finite dimensional distributions of the process
in (2.18). The lemma follows. �

In light of the Skorokhod–Dudley–Wichura theorem (cf. [26, p. 47]), we may reformulate
Lemma 2.5 as follows.

Corollary 2.1. If (1.1)–(1.4) hold, then for each positive integer N, there exists K independent,
identically distributed Wiener processes {Wi,N }

K
i=1 such that for each j ,

sup
0≤x≤1

 1
√

N

⌊N x⌋
i=1

⟨X i,m, φ j,m⟩ − λ
1/2
j,m W j,N (x)

 P
−→ 0,

as N → ∞.

Lemma 2.6. If (1.1)–(1.4) hold, then for {Wi,N }
K
i=1 defined in Corollary 2.1, we have that

sup
0≤x≤1

 
1

√
N

⌊N x⌋
i=1

X i,m,K (t) −

K
ℓ=1

λ
1/2
ℓ,m Wℓ,N (x)φℓ,m(t)

2

dt
P

−→ 0, (2.19)

as N → ∞.

Proof. By using (2.17), we get that

1
√

N

⌊N x⌋
i=1

X i,m,K (t) −

K
ℓ=1

λ
1/2
ℓ,m Wℓ,N (x)φℓ,m(t)

=

K
ℓ=1


1

√
N

⌊N x⌋
i=1

⟨X i,m, φℓ,m⟩ − λ
1/2
ℓ,m Wℓ,N (x)


φℓ,m(t).
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The substitution of this into the expression in (2.19) along with a simple calculation shows that

sup
0≤x≤1

 
1

√
N

⌊N x⌋
i=1

X i,m,K (t) −

K
ℓ=1

λ
1/2
ℓ,m Wℓ,N (x)φℓ,m(t)

2

dt

= sup
0≤x≤1

K
ℓ=1


1

√
N

⌊N x⌋
i=1

⟨X i,m, φℓ,m⟩ − λ
1/2
ℓ,m Wℓ,N (x)

2

≤

K
ℓ=1

sup
0≤x≤1


1

√
N

⌊N x⌋
i=1

⟨X i,m, φℓ,m⟩ − λ
1/2
ℓ,m Wℓ,N (x)

2
P

−→ 0,

as N → ∞, by Corollary 2.1. �

Lemma 2.7. If (1.1)–(1.4) hold,

sup
0≤x≤1

 
∞

ℓ=K+1

λ
1/2
ℓ,m Wℓ(x)φℓ,m(t)

2

dt
P

−→ 0, (2.20)

as K → ∞, where W1, W2, . . . are independent and identically distributed Wiener processes.

Proof. Since the functions {φℓ,m}
∞

ℓ=1 are orthonormal, we have that

E sup
0≤x≤1

 
∞

ℓ=K+1

λ
1/2
ℓ,m Wℓ(x)φℓ,m(t)

2

dt = E sup
0≤x≤1

∞
ℓ=K+1

λℓ,m W 2
ℓ (x)

≤

∞
ℓ=K+1

λℓ,m E sup
0≤x≤1

W 2
ℓ (x) −→ 0,

as K → ∞. Therefore (2.20) follows from Markov’s inequality. �

Lemma 2.8. If (1.1)–(1.4) hold, then for each N we can define independent identically dis-
tributed Wiener processes {Wi,N }

K
i=1 such that

sup
0≤x≤1

 
1

√
N

⌊N x⌋
i=1

X i,m(t) −

∞
ℓ=1

λ
1/2
ℓ,m Wℓ,N (x)φℓ,m(t)

2

dt
P

−→ 0,

as N → ∞.

Proof. It follows from Lemmas 2.4–2.7. �

Since the distribution of Wℓ,N , 1 ≤ ℓ < ∞ does not depend on N , it is enough to consider
the asymptotics for


∞

ℓ=1 λ
1/2
ℓ,m Wℓ(x)φℓ,m(t), where Wℓ are independent Wiener processes.

Lemma 2.9. If (1.1)–(1.4) hold, then for each m we can define independent and identically
distributed Wiener processes W̄ℓ,m(x), 1 ≤ ℓ < ∞ such that

sup
0≤x≤1

 
∞

ℓ=1

λ
1/2
ℓ,m Wℓ(x)φℓ,m(t) −

∞
ℓ=1

λ
1/2
ℓ W̄ℓ,m(x)φℓ(t)

2

dt
P

−→ 0, (2.21)

as m → ∞.
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Proof. Let

∆m(x, t) =

∞
ℓ=1

λ
1/2
ℓ,m Wℓ(x)φℓ,m(t).

Let M be a positive integer and define xi = i/M, 0 ≤ i ≤ M . It is easy to see that

E max
0≤i<M

sup
0≤h≤1/M


(∆m(xi + h, t) − ∆m(xi , t))2dt

≤

∞
ℓ=1

λℓ,m E


max

0≤i<M
sup

0≤h≤1/M
(Wℓ(xi + h) − Wℓ(xi ))

2



= E


max

0≤i<M
sup

0≤h≤1/M
(W1(xi + h) − W1(xi ))

2


∞

ℓ=1

λℓ,m .

Using Lemma 2.2 we get that

∞
ℓ=1

λℓ,m =


E∆2

m(1, t)dt =


Cm(t, t)dt →


C(t, t)dt =

∞
ℓ=1

λℓ.

So by the modulus of continuity of the Wiener process (cf. [15]) we get that

lim
M→∞

lim sup
m→∞

E max
0≤i<M

sup
0≤h≤1/M


(∆m(xi + h, t) − ∆m(xi , t))2dt = 0. (2.22)

By the Karhunen–Loéve expansion we can also write ∆m as

∆m(x, t) =

∞
ℓ=1

⟨∆m(x, ·), φℓ⟩φℓ(t)

and

E


∆2
m(x, t)dt =

∞
ℓ=1

E(⟨∆m(x, ·), φℓ⟩)
2.

So by Lemma 2.2 we have

∞
ℓ=1

E(⟨∆m(x, ·), φℓ⟩)
2

→ x
∞

ℓ=1

λℓ.

Also, for any positive integer ℓ,

E(⟨∆m(x, ·), φℓ⟩)
2

=


Cm(t, s)φℓ(t)φℓ(s)dtds →


C(t, s)φℓ(t)φℓ(s)dtds = λℓ,

as m → ∞. Hence for every z > 0 we have

lim sup
K→∞

lim sup
m→∞

P


 

∞
ℓ=K+1

⟨∆m(x, ·), φℓ⟩φℓ(t)

2

dt > z

 = 0. (2.23)

The joint distribution of ⟨∆(xi , ·), φℓ⟩, 1 ≤ i ≤ M, 1 ≤ ℓ ≤ K is multivariate normal with
zero mean. Hence they converge jointly to a multivariate normal distribution. To show their joint
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convergence in distribution, we need to show the convergence of the covariance matrix. Using
again Lemma 2.2 we get that

E⟨∆(xi , ·), φℓ⟩⟨∆(x j , ·), φk⟩ = min(xi , x j )


Cm(t, s)φℓ(t)φk(s)dtds

→ min(xi , x j )


C(t, s)φℓ(t)φk(s)dtds

= min(xi , x j )λℓ I {k = ℓ}.

Due to this covariance structure and the Skorokhod–Dudley–Wichura theorem (cf. [26, p. 47])
we can find independent Wiener processes W̄ℓ,m(x), 1 ≤ ℓ < ∞ such that

max
1≤i≤M

max
1≤ℓ≤K

|⟨∆(xi , ·), φℓ⟩ − λ
1/2
ℓ W̄ℓ,m(xi )| = oP (1), as m → ∞.

Clearly, for all 0 ≤ x ≤ 1

E
 

∞
ℓ=K+1

λ
1/2
ℓ W̄ℓ,m(x)φℓ(t)

2

dt = x
∞

ℓ=K+1

λℓ → 0, as m → ∞,

and therefore similarly to (2.23)

lim sup
K→∞

lim sup
m→∞

P


 

∞
ℓ=K+1

λ
1/2
ℓ W̄ℓ,m(x)φℓ(t)

2

dt > z

 = 0

for all z > 0. Similarly to (2.22) one can show that

E max
0≤i<M

sup
0≤h≤1/M

 
∞

ℓ=1

(W̄ℓ,m(xi + h) − W̄ℓ,m(xi ))φℓ(t)

2

dt

≤ E


max

0≤i<M
sup

0≤h≤1/M
(W (xi + h) − W (xi ))

2


∞

ℓ=1

λℓ → 0, as M → ∞,

where W is a Wiener process. This also completes the proof of Lemma 2.9. �

Proof of Theorem 1.1. First we approximate SN (x,t) with m-dependent processes (Lemma 2.1).
The second step of the proof is the approximation of the sums of m-dependent processes with
a Gaussian process with covariance function min(x, x ′)Cm(t, s), where Cm is defined in (2.2)
(Lemma 2.8). The last step of the proof is the convergence of Gaussian processes with covariance
functions min(x, x ′)Cm(t, s) to a Gaussian process with covariance function min(x, x ′)C(t, s)
(Lemma 2.9). �

3. Some moment and maximal inequalities

In this section we give the proof of the maximal inequality used in Lemma 2.1 which is a
crucial ingredient of the proof of Theorem 1.1. Actually, we will prove below some moment and
maximal inequalities for partial sums of function valued Bernoulli shift sequences which have
their own interest and can be used in various related problems.

Our first lemma is a Hilbert space version of Doob’s [12, p. 226] inequality.
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Lemma 3.1. If Z1 and Z2 are independent mean zero Hilbert space valued random variables,
and if 0 < δ ≤ 1, then

E∥Z1 + Z2∥
2+δ

≤ E∥Z1∥
2+δ

+ E∥Z2∥
2+δ

+ E∥Z1∥
2(E∥Z2∥

2)δ/2

+ E∥Z2∥
2(E∥Z1∥

2)δ/2.

Proof. Since 0 < δ ≤ 1, for any A, B ≥ 0 we have that (A + B)δ ≤ Aδ
+ Bδ (cf. [17, p. 32]).

An application of this inequality along with Minkowski’s inequality gives that

∥Z1 + Z2∥
δ

≤ (∥Z1∥ + ∥Z2∥)
δ

≤ ∥Z1∥
δ
+ ∥Z2∥

δ.

We also have by Hölder’s inequality that

E∥Z1∥
δ

≤ (E∥Z1∥
2)δ/2.

This yields that

E∥Z1 + Z2∥
2+δ

= E∥Z1 + Z2∥
2
∥Z1 + Z2∥

δ

≤ E∥Z1 + Z2∥
2(∥Z1∥

δ
+ ∥Z2∥

δ)

= E[∥Z1∥
2
+ ∥Z2∥

2
+ 2⟨Z1, Z2⟩](∥Z1∥

δ
+ ∥Z2∥

δ)

= E∥Z1∥
2+δ

+ E∥Z2∥
2+δ

+ E∥Z1∥
2 E∥Z2∥

δ
+ E∥Z2∥

2 E∥Z1∥
δ

≤ E∥Z1∥
2+δ

+ E∥Z2∥
2+δ

+ E∥Z1∥
2(E∥Z2∥

2)δ/2

+ E∥Z2∥
2(E∥Z1∥

2)δ/2,

which proves the lemma. �

Remark 3.1. If Z1 and Z2 are independent and identically distributed, then the result of
Lemma 3.1 can be written as

E∥Z1 + Z2∥
2+δ

≤ 2E∥Z1∥
2+δ

+ 2(E∥Z1∥
2)1+δ/2.

Let

I (r) =

∞
ℓ=1

(E∥X0 − X0,ℓ∥
r )1/r . (3.1)

We note that by (1.4), I (r) < ∞ for all 2 ≤ r ≤ 2 + δ.

Lemma 3.2. If (1.1)–(1.4) hold, then we have

E

 n
i=1

(X i − X i,m)


2

≤ n A,

where

A =


E(X0(t) − X0,m(t))2dt + 25/2


E(X0(t) − X0,m(t))2dt

1/2

I (2). (3.2)

Proof. Let Yi = X i − X i,m . By Fubini’s theorem and the fact that the random variables are
identically distributed, we conclude
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E

 n
i=1

Yi


2

=


E


n

i=1

Yi (t)

2

dt

= n


EY 2
0 (t)dt + 2

 n−1
i=1

(n − i)E[Y0(t)Yi (t)]dt

≤ n


EY 2
0 (t)dt + 2n

n−1
i=1


|E[Y0(t)Yi (t)]|dt

≤ n


EY 2
0 (t)dt + 2n

∞
i=1


|E[Y0(t)Yi (t)]|dt. (3.3)

We recall X i,i from (1.4). Under this definition, the random variables Y0 and X i,i are independent
for all i ≥ 1. Let Zi = X i,m , if i > m and Zi = g(ϵi , . . . , ϵ1, δi ), if 1 ≤ i ≤ m, where
δi = (δi,0, δi,−1, . . .) and δi, j are iid copies of ϵ0, independent of the ϵℓ’s and ϵk,ℓ’s. Clearly, Zi
and Y0 are independent and thus with Yi,i = X i,i − Zi we have

E[Y0(t)Yi (t)] = E[Y0(t)(Yi (t) − Yi,i (t))].

Furthermore, by first applying the Cauchy–Schwarz inequality for expected values and then by
the Cauchy–Schwarz inequality for functions in L2, we get that

|E[Y0(t)(Yi (t) − Yi,i (t))]|dt ≤

 
EY 2

0 (t)
1/2 

E

Yi (t) − Yi,i (t)

21/2
dt

≤


EY 2

0 (t)dt

1/2 
E

Yi (t) − Yi,i (t)

2 dt

1/2

.

Also, 
E

Yi (t) − Yi,i (t)

2 dt

≤ 2


E

X i (t) − X i,i (t)

2 dt +


E

X i,m(t) − Zi (t)

2 dt


.

The substitution of this expression into (3.3) gives that

E

 n
i=1

Yi


2

≤ n


EY 2
0 (t)dt + 23/2n

∞
i=1


EY 2

0 (t)dt

1/2

×


E

X i (t) − X i,i (t)

2 dt

1/2

+


E

X i,m(t) − Zi (t)

2 dt

1/2


≤ n


EY 2

0 (t)dt + 25/2


EY 2
0 (t)dt

1/2

I (2)


,

which completes the proof. �
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Theorem 3.1. If (1.1)–(1.4) hold, then for all N ≥ 1

E

 N
i=1

(X i − X i,m)


2+δ

≤ N 1+δ/2 B,

where

B = E∥X0 − X0,m∥
2+δ

+ c2+δ
δ [A1+δ/2

+ J 2+δ
m + Jm A(1+δ)/2

+ A(1+δ/2)δ J 2
m]

+ (cδ J 2
m)1/(1−δ) (3.4)

with A defined in (3.2),

cδ = 36


1 −
1

2δ/2

−1

(3.5)

and

Jm = 2(E∥X0 − X0,m∥
2+δ)(κ−2−δ)/(κ(2+δ))

∞
ℓ=1

(E∥X0 − X0,ℓ∥
2+δ)1/κ .

Proof. We prove Theorem 3.1 using mathematical induction. By the definition of B, the
inequality is obvious when N = 1. Assume that it holds for all k which are less than or equal
to N − 1. We assume that N is even, i.e. N = 2n. The case when N is odd can be done in the
same way with minor modifications. Let Yi = X i − X i,m . For all i satisfying n + 1 ≤ i ≤ 2n,
we define

X∗

i,n = g(ϵi , ϵi−1, . . . , ϵn+1, ϵ
∗
n , ϵ∗

n−1, . . .)

where the ϵ∗

j ’s denote iid copies of ϵ0, independent of {ϵi , −∞ < i < ∞} and {ϵ∗

k,ℓ, −∞ <

k, ℓ < ∞}. We define Zi,n = X i,m , if m + n + 1 ≤ i ≤ 2n and

Zi,n = g(ϵi , . . . , ϵn+1, ϵ
∗
n , . . . ϵ∗

i−m+1, δi ) with δi = (δi,n, δi,n−1, . . .),

if n + 1 ≤ i ≤ n + m, where the δk,ℓ’s are iid copies of ϵ0, independent of the ϵk’s and ϵ∗

k,ℓ’s.
Let Y ∗

i,n = X∗

i,n − Zi,n , if n + 1 ≤ i ≤ 2n. Under this definition, the sequences {Yi , 1 ≤ i ≤ n}

and {Y ∗

i,n, n + 1 ≤ i ≤ 2n} are independent and have the same distribution. Let

Θ =

 n
i=1

Yi +

2n
i=n+1

Y ∗

i,n

 and Ψ =

 2n
i=n+1


Yi − Y ∗

i,n

 .

By applying the triangle inequality for L2 and expected values, we get

E

 2n
i=1

Yi


2+δ

= E

 n
i=1

Yi +

2n
i=n+1

Y ∗

i,n +

2n
i=n+1


Yi − Y ∗

i,n


2+δ

≤ E (Θ + Ψ)2+δ

≤


(EΘ2+δ)1/(2+δ)

+ (EΨ2+δ)1/(2+δ)
2+δ

. (3.6)

The two-term Taylor expansion gives for all a, b ≥ 0 and r > 2 that

(a + b)r
≤ ar

+ rar−1b +
r(r − 1)

2
(a + b)r−2b2. (3.7)
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Since both of the expected values in the last line of the inequality in (3.6) are positive, we obtain
by (3.7) that

E

 2n
i=1

Yi


2+δ

≤ EΘ2+δ
+ (2 + δ)(EΘ2+δ)(1+δ)/(2+δ)(EΨ2+δ)1/(2+δ)

+ (2 + δ)(1 + δ)

(EΘ2+δ)1/(2+δ)

+ (EΨ2+δ)1/(2+δ)
δ

(EΨ2+δ)2/(2+δ). (3.8)

We proceed by bounding the terms (EΨ2+δ)1/(2+δ), and EΘ2+δ individually. Applications of
both the triangle inequality for L2 and for expected values yield that

(EΨ2+δ)1/(2+δ)
=

E

 2n
i=n+1


Yi − Y ∗

i,n


2+δ
1/(2+δ)

≤

E


2n

i=n+1

∥Yi − Y ∗

i,n∥

2+δ
1/(2+δ)

≤

2n
i=n+1

(E∥Yi − Y ∗

i,n∥
2+δ)1/(2+δ).

By Hölder’s inequality we have, with κ in (1.4),

(E∥Yi − Y ∗

i,n∥
2+δ)1/(2+δ)

= (E[∥Yi − Y ∗

i,n∥
(2+δ)2/κ

∥Yi − Y ∗

i,n∥
(2+δ)−(2+δ)2/κ

])1/(2+δ)

≤ (E∥Yi − Y ∗

i,n∥
2+δ)1/κ(E∥Yi − Y ∗

i,n∥
2+δ)(κ−2−δ)/(κ(2+δ)).

It follows from the definition of Yi , Y ∗

i,n and the convexity of x2+δ that

E∥Yi − Y ∗

i,n∥
2+δ

≤ 21+δ(E∥X i − X∗

i,n∥
2+δ

+ E∥X i,m − Zi,n∥
2+δ)

≤ 22+δ E∥X0 − X0,i−n∥
2+δ

and

E∥Yi − Y ∗

i,n∥
2+δ

≤ 21+δ(E∥X i − X i,m∥
2+δ

+ E∥X∗

i,n − Zi,n∥
2+δ)

≤ 22+δ E∥X0 − X0,m∥
2+δ.

Thus we get

(EΨ2+δ)1/(2+δ)
≤ 2(E∥X0 − X0,m∥

2+δ)(κ−2−δ)/(κ(2+δ))
∞

ℓ=1

(E∥X0 − X0,ℓ∥
2+δ)1/κ

= Jm .

To bound EΘ2+δ , since
n

i=1 Yi and
2n

i=n+1 Y ∗

i,n are independent and have the same
distribution, we have by Lemma 3.2, Remark 3.1 and the inductive assumption that

EΘ2+δ
= E

 n
i=1

Yi +

2n
i=n+1

Y ∗

i,n


2+δ
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≤ 2E

 n
i=1

Yi


2+δ

+ 2

E

 n
i=1

Yi


2
1+δ/2

≤ 2n1+δ/2 B + 2(n A)1+δ/2.

The substitution of these two bounds into (3.8) give that

E

 2n
i=1

Yi


2+δ

≤ 2n1+δ/2 B + 2(n A)1+δ/2

+ (2 + δ)[2n1+δ/2 B + 2(n A)1+δ/2
]
(1+δ)/(2+δ) Jm

+ (2 + δ)(1 + δ)

2n1+δ/2 B + 2(n A)1+δ/2

+ Jm

δ
J 2

m . (3.9)

Furthermore, by the definition of B, we may further bound each summand on the right hand
side of (3.9). We obtain for the first two terms that

2n1+δ/2 B + 2(n A)1+δ/2
≤ (2n)1+δ/2 B


2−δ/2

+
A1+δ/2

B


≤ (2n)1+δ/2 B


2−δ/2

+ 6c−1
δ


.

A similar factoring procedure applied to the expression in the second line of (3.9) yields that

(2 + δ)

2n1+δ/2 B + 2(n A)1+δ/2

(1+δ)/(2+δ)

Jm

≤ 6

(n1+δ/2 B)(1+δ)/(2+δ)

+ (n A)(1+δ/2)[(1+δ)/(2+δ)]


Jm

≤ (2n)1+δ/2 B


6Jm

B1/(2+δ)
+

6Jm A(1+δ/2)[(1+δ)/(2+δ)]

B


≤ (2n)1+δ/2 B


12c−1

δ


.

Since 0 < δ < 1, the expression in the third line of (3.9) may be broken into three separate terms:

(2 + δ)(1 + δ)

2n1+δ/2 B + 2(n A)1+δ/2

+ Jm

δ
J 2

m

≤ 6(2n1+δ/2 B)δ J 2
m + 6(2(n A)(1+δ/2))δ J 2

m + 6J 2+δ
m .

Furthermore by again applying the definition of B we have that

6(2n1+δ/2 B)δ J 2
m = (2n)1+δ/2 B


6(2n1+δ/2 B)δ J 2

m

(2n)1+δ/2 B


≤ (2n)1+δ/2 B


6J 2

m

B1−δ


≤ (2n)1+δ/2 B[6c−1

δ ],

6(2(n A)(1+δ/2))δ J 2
m = (2n)1+δ/2 B


6(2(n A)(1+δ/2))δ J 2

m

(2n)1+δ/2 B
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≤ (2n)1+δ/2 B


6A(1+δ/2)δ J 2

m

B


≤ (2n)1+δ/2 B[6c−1

δ ],

and

6J 2+δ
m = (2n)1+δ/2 B


6J 2+δ

m

(2n)1+δ/2 B


≤ (2n)1+δ/2 B


6J 2+δ

m

B


≤ (2n)1+δ/2 B[6c−1

δ ].

The application of these bounds to the right hand side of (3.9) give that

E

 2n
i=1

Yi


2+δ

≤ (2n)1+δ/2 B

2−δ/2

+ 36c−1
δ


= (2n)1+δ/2 B,

which concludes the induction step and thus the proof. �

Theorem 3.2. If (1.1)–(1.4) hold, then we have

E


max

1≤k≤N

 k
i=1

(X i − X i,m)


2+δ

≤ am N 1+δ/2 (3.10)

with some sequence am satisfying am → 0 as m → ∞.

Proof. By examining the proofs, it is evident that Theorem 3.1 in [24] holds for L2 valued
random variables. Furthermore, by the stationarity of the sequence {X i − X i,m}

∞

i=1 and
Theorem 3.1, the conditions of Theorem 3.1 in Móricz are satisfied and therefore

E


max

1≤k≤N

 k
i=1

(X i − X i,m)


2+δ

≤ c∗
δ N 1+δ/2 B,

with some constant c∗
δ , depending only on δ and B is defined in (3.4). Observing that B = Bm →

0 as m → ∞, the result is proven. �

Theorem 3.1 provides inequality for the moments of the norm of partial sums of X i − X i,m
which are not Bernoulli shifts. However, checking the proof of Theorem 3.1, we get the following
result for Bernoulli shifts.

Theorem 3.3. If (1.1), (1.3) are satisfied and X is a Bernoulli shift satisfying

I (2 + δ) =

∞
ℓ=1

(E∥X0 − X0,ℓ∥
2+δ)1/(2+δ) < ∞ with some 0 < δ < 1,

where X0,ℓ is defined by (1.4), then for all N ≥ 1

E

 N
i=1

X i


2+δ

≤ N 1+δ/2 B∗,

where

B∗ = E∥X0∥
2+δ

+ c2+δ
δ [A1+δ/2

∗ + I 2+δ(2 + δ)

+ I (2 + δ)A(1+δ)/2
∗ + A(1+δ/2)δ

∗ I 2(2 + δ)] + (cδ I 2(2))1/(1−δ),
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A∗ =


E X2

0(t)dt + 2


E X2
0(t)dt

1/2

I (2)

and cδ is defined in (3.5) and I (2) in (3.1).

Remark 3.2. The inequality in Theorem 3.1 is an extension of Proposition 4 in [2] to random
variables in Hilbert spaces; we have computed how B∗ depends on the distribution of X explicitly.
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