A METRIC DISCREPANCY RESULT WITH GIVEN SPEED

ISTVÁN BERKES, KATUSI FUKUYAMA, AND TAKUYA NISHIMURA

ABSTRACT. It is known that the discrepancy $D_N\{kx\}$ of the sequence $\{kx\}$ satisfies $ND_N\{kx\} = O\left((\log N)(\log\log N)^{1+\varepsilon}\right)$ a.e. for all $\varepsilon > 0$, but not for $\varepsilon = 0$. For $n_k = \theta^k$, $\theta > 1$ we have $ND_N\{n_kx\} \leq (\Sigma_\theta + \varepsilon)(2N\log\log N)^{1/2}$ a.e. for some $0 < \Sigma_\theta < \infty$ and $N \geq N_0$ if $\varepsilon > 0$, but not for $\varepsilon < 0$. In this paper we prove, extending results of Aistleitner-Larcher [6], that for any sufficiently smooth intermediate speed $\Psi(N)$ between $(\log N)(\log\log N)^{1+\varepsilon}$ and $(N\log\log N)^{1/2}$ and for any $\Sigma > 0$, there exists a sequence $\{n_k\}$ of positive integers such that $ND_N\{n_kx\} \leq (\Sigma + \varepsilon)\Psi(N)$ eventually holds a.e. for $\varepsilon > 0$, but not for $\varepsilon < 0$. We also consider a similar problem on the growth of trigonometric sums.

1. Introduction

A sequence $\{x_k\}$ of real numbers is said to be uniformly distributed modulo 1 if

$$\frac{1}{N} \# \{ k \le N : \langle x_k \rangle \in [a, b) \} \to b - a, \quad (N \to \infty),$$

for all $0 \le a < b \le 1$, where $\langle x \rangle$ denotes the fractional part x - [x] of a real number x. The discrepancy $D_N\{x_k\}$, also denoted by $D_N(x_1, \ldots, x_N)$, is used to measure the speed of convergence:

$$D_N\{x_k\} = \sup_{0 < a < b < 1} \left| \frac{1}{N} \#\{k \le N : \langle x_k \rangle \in [a, b)\} - (b - a) \right|.$$

For arithmetic progressions $\{kx\}$ with $x \notin \mathbf{Q}$, Bohl [10], Sierpiński [24], and Weyl [26] independently proved that they are uniformly distributed modulo 1. A metric result of Khintchine [20] implies

$$ND_N\{kx\} = O((\log N)(\log \log N)^{1+\varepsilon})$$
 a.e. for any $\varepsilon > 0$ (1)

and this fails for $\varepsilon \leq 0$. The discrepancy of exponentially growing sequences has also been investigated extensively. By assuming the

I. Berkes is supported by FWF Grant P24302-N18 and OTKA Grant K108615. K. Fukuyama is supported by JSPS KAKENHI 16K05204.

Hadamard gap condition

$$n_{k+1}/n_k \ge q > 1 \quad (k = 1, 2, ...),$$
 (2)

Philipp [23] proved, using Takahashi's method [25], that

$$\frac{1}{4\sqrt{2}} \le \lim_{N \to \infty} \frac{ND_N\{n_k x\}}{\sqrt{2N\log\log N}} \le \frac{1}{\sqrt{2}} \left(166 + \frac{664}{q^{1/2} - 1}\right) \quad \text{a.e.}$$
 (3)

For improvements of (3), see [3] for the lower bound, and [18] for the upper bound. In case of geometric progressions, an exact law of the iterated logarithm holds: for any $\theta \notin [-1,1]$ there exists a constant $\Sigma_{\theta} \geq 1/2$ with

$$\overline{\lim}_{N \to \infty} \frac{N D_N \{\theta^k x\}}{\sqrt{2N \log \log N}} = \Sigma_{\theta} \quad \text{a.e.}$$

If $\theta^j \notin \mathbf{Q}$ for any $j \in \mathbf{N}$, then $\Sigma_{\theta} = \frac{1}{2}$, otherwise $\Sigma_{\theta} > \frac{1}{2}$. For a θ which is a power root of an integer, of a large rational number, or of a ratio of odd integers, the concrete value of Σ_{θ} is evaluated. See [12, 14, 15, 16, 17]. For conditions to have an exact law of the iterated logarithm in (3), see [1, 5].

Since there is a big difference between (1) and (3), it is natural to ask if for intermediate speeds $\Psi(N)$ between $(\log N)(\log \log N)^{1+\varepsilon}$ and $(N \log \log N)^{1/2}$ one can find a sequence $\{n_k\}$ of integers such that the growth speed of $D_N\{n_kx\}$ is $\Psi(N)$ in the above sense. For all $\gamma \in (0, 1/2]$, Aistleitner and Larcher [6] constructed an increasing sequence $\{n_k\}$ of integers such that $ND_N\{n_kx\} = O(N^{\gamma})$ and $ND_N\{n_kx\} = \Omega(N^{\gamma-\varepsilon})$ a.e. for all $\varepsilon > 0$. They also constructed (see [7]) a sequence $\{n_k\}$ with polynomial growth such that $ND_N\{n_kx\} = O((\log N)^{2+\varepsilon})$ a.e. for all $\varepsilon > 0$.

The main result of the present paper is the following

Theorem 1. Let $\{\Psi(N)\}$ be a sequence of real numbers. Assume that there exists a constant N_0 such that

$$0 < \Psi(N) \le \Psi(N+1) \quad \text{for all } N \ge N_0, \tag{4}$$

$$\Psi(N) \ge (\log N)(\log \log N)^{1+\varepsilon}$$
 for some $\varepsilon > 0$ and $N \ge N_0$, (5)

$$\Psi^{2}(N+1) - \Psi^{2}(N) = o(\log \log \Psi^{2}(N)). \tag{6}$$

Then for any $\Sigma > 0$, there exists a sequence $\{n_k\}$ of positive integers satisfying $1 \le n_{k+1} - n_k \le 2$ and

$$\overline{\lim}_{N \to \infty} \frac{N D_N \{n_k x\}}{\Psi(N)} = \Sigma \quad a.e.$$
 (7)

Note that for the function $\Psi^2(N) = N \log \log N$ we have

$$\Psi^2(N+1) - \Psi^2(N) \sim \log \log \Psi^2(N)$$

and thus condition (6) means that the jumps of $\Psi^2(N)$ are of smaller order of magnitude than those of $N \log \log N$. Naturally, this implies that $\Psi^2(N) = o(N \log \log N)$ and thus the conditions of Theorem 1 bound the function $\Psi^2(N)$ between $(\log N)(\log \log N)^{1+\varepsilon}$ and $N \log \log N$ and require a certain smoothness of growth. Typical examples are $\Psi(N) = N^{\alpha}(\log N)^{\beta}(\log \log N)^{\gamma}$ where the parameters α, β, γ are chosen so that the order of growth of $\Psi^2(N)$ is between the previous bounds. Note that the theorem does not cover $\Psi(N) = (N \log \log N)^{1/2}$; the existence of $\{n_k\}$ with (7) is already proved in [4] for $0 < \Sigma < \infty$, and in [2] for $\Sigma = \infty$. See also [9, 14].

As a related problem, we can ask if there exists a sequence $\{n_k\}$ such that $\sum_{k=1}^{N} \cos 2\pi n_k x$ grows with a given speed $\Psi(N)$. The law of the iterated logarithm by Erdős-Gál [11] states

$$\overline{\lim}_{N \to \infty} \frac{1}{\sqrt{N \log \log N}} \sum_{k=1}^{N} \cos 2\pi n_k x = 1 \quad \text{a.e.}$$
 (8)

for $\{n_k\}$ satisfying the Hadamard gap condition (2). As we will see in Section 4, for any D>0 there exists an increasing $\{n_k\}$ such that (8) holds with the norming factor replaced by $c\sqrt{N}(\log\log N)^D$. The following theorem shows that any growth speed $O(\sqrt{N}(\log\log N)^D)$ with small jumps is possible for $\sum_{k=1}^N \cos 2\pi n_k x$.

Theorem 2. Let $\{\Psi(N)\}$ be an sequence of real numbers. Assume that there exists a constant N_0 and D > 0 such that (4),

$$\Psi(N) \to \infty, \quad and \quad \Psi^2(N+1) - \Psi^2(N) \quad = o \big((\log \log \Psi^2(N))^D \big).$$

Then there exists a strictly increasing sequence $\{n_k\}$ of positive integers such that

$$\overline{\lim}_{N \to \infty} \frac{1}{\Psi(N)} \sum_{k=1}^{N} \cos 2\pi n_k x = 1 \quad a.e.$$
 (9)

In conclusion, we mention a number of open problems related to our results. Let \mathcal{G} denote the class of functions $\Psi(N)$, $N=1,2,\ldots$ such that for some increasing sequence $\{n_k\}$ relation (7) holds for some constant $0 < \Sigma < \infty$. From Theorem 1 it follows that \mathcal{G} contains all smoothly increasing functions $\Psi(N)$ with speed between $(\log N)(\log \log N)^{1+\varepsilon}$ for some $\varepsilon > 0$ and $(N \log \log N)^{1/2}$. By a classical result of W. Schmidt (see e.g. Kuipers and Niedereiter [22], p. 109) for any infinite sequence $\{x_k\}$ we have $ND_N\{x_k\} \geq c \log N$ for

infinitely many N with an absolute constant c and thus \mathcal{G} contains no functions $\Psi(N) = o(\log N)$. Hence assumption (5) in Theorem 1 is nearly optimal; whether $\Psi(N) = (\log N)(\log \log N)^{\alpha}$, $0 \le \alpha \le 1$ belongs to \mathcal{G} remains open. Concerning upper bounds for functions in \mathcal{G} , the results of Baker [8] and Berkes and Philipp [9] imply that

$$ND_N\{n_k x\} \le \operatorname{const} \cdot N^{1/2}(\log N)^{\gamma}$$
 a.e.

holds for all $\{n_k\}$ if $\gamma > 3/2$ but not if $\gamma \leq 1/2$. This implies that for $\gamma > 3/2$ we have $N^{1/2}(\log N)^{\gamma} \notin \mathcal{G}$ and makes it plausible (but does not prove) that $(N \log N)^{1/2} \in \mathcal{G}$. If this is true, condition (6) in Theorem 1 can be replaced by

$$\Psi^2(N+1) - \Psi^2(N) = o(\log \Psi^2(N))$$

allowing all smoothly growing functions $\Psi(N) = O(N \log N)^{1/2}$, an essentially optimal result. Similar remarks hold for Theorem 2.

2. Key Proposition

We begin with proving a weaker version of Theorem 1.

Proposition 3. For any sequence $\{\psi(N)\}$ satisfying

$$\psi(0) = 0, \quad \psi(N) \le \psi(N+1),$$
 (10)

$$(\log N)(\log\log N)^{1+\varepsilon} = o(\psi(N)) \quad \text{for some} \quad \varepsilon > 0,$$
 (11)

$$\psi^{2}(N+1) - \psi^{2}(N) \le \frac{1}{2} (4 \vee \log \log \psi^{2}(N)), \tag{12}$$

there exists a sequence $\{n_k\}$ of positive integers satisfying $1 \le n_{k+1} - n_k \le 2$ and

$$\overline{\lim}_{N \to \infty} \frac{N D_N \{n_k x\}}{\psi(N)} = \frac{\sqrt{2}}{4} \quad a.e.$$
 (13)

Set $G(x) = x/(4 \vee \log \log x)$, where $\log \log x$ is meant as $-\infty$ for $x \leq 1$. Note that G(x) is increasing. By (12), we can derive

$$G(\psi^{2}(N+1)) - G(\psi^{2}(N)) \le \frac{\psi^{2}(N+1) - \psi^{2}(N)}{4 \vee \log \log \psi^{2}(N)} \le \frac{1}{2}.$$
 (14)

Let ν_i be the smallest ν satisfying $2i^3 \leq G(\psi^2(i^3 + \nu))$. Note that $\nu_0 = 0$. By (14), we have

$$G(\psi^2(i^3 + \nu_i)) = 2i^3 + e_i \text{ for some } 0 \le e_i < 1/2.$$
 (15)

Set
$$\Delta_i = \mathbf{N} \cap (2(i-1)^3, 2i^3]$$
 and $\eta_i = 2i^3 - 2(i-1)^3$.

By using (14), we have

$$\eta_i - \frac{1}{2} \le 2i^3 - 2(i-1)^3 + e_i - e_{i-1}$$

$$= G(\psi^2(i^3 + \nu_i)) - G(\psi^2((i-1)^3 + \nu_{i-1})) \le \frac{1}{2} (\frac{1}{2}\eta_i + \nu_i - \nu_{i-1}).$$

By $\eta_i \geq 2$, we have

$$\nu_i - \nu_{i-1} \ge (3/2)\eta_i - 1 \ge \eta_i \quad \text{and} \quad \nu_i \ge 2i^3.$$
 (16)

Set $\mu_k = 2\nu_i + 2(k - 2i^3)$ for $k \in \Delta_i$. By $\mu_{2i^3+1} = 2\nu_{i+1} - 2\eta_{i+1} + 2 \ge 2\nu_i + 2 > \mu_{2i^3}$, we see that $\{\mu_k\}$ is strictly increasing.

We now introduce some notation. Denote by $\mathbf{1}_{[a,b)}$ the indicator function of [a,b), and put $\widetilde{\mathbf{1}}_{[a,b)}\langle x\rangle = \mathbf{1}_{[a,b)}(\langle x\rangle) - (b-a)$. Then we have

$$ND_N\{x_k\} = ND_N(x_1, \dots, x_N) = \sup_{0 \le a < b \le 1} \left| \sum_{k=1}^N \widetilde{\mathbf{1}}_{[a,b)} \langle x_k \rangle \right|.$$

Put $S = \{2^{-l}i : l \in \mathbb{N}, i = 0, 1, \dots, 2^{l}\}, S^{2<} = \{(a, b) : a, b \in S, a < b\},$ $\phi_{C}(t) = \sqrt{Ct(1 \vee \log \log t)}, \text{ and } \sigma_{a,b} = \sqrt{(b-a)(1-(b-a))}.$ Let $\{X_k\}$ be a sequence of independent random variables satisfying $P(X_k = 1) = P(X_k = -1) = 1/2.$

Lemma 4. We have

$$\overline{\lim}_{N \to \infty} \frac{1}{\phi_2(N)} \left| \sum_{k=1}^N \widetilde{\mathbf{1}}_{[a,b)} \langle \mu_k x \rangle X_k \right| = \sigma_{a,b}$$
 (17)

for all $(a,b) \in S^{2<}$, a.e., a.s.

Proof. Since μ_k is a strictly increasing sequence of integers, by Weyl's theorem [27], $\{\mu_k x\}$ is uniformly distributed modulo 1 a.e. Hence,

$$B_N := \sum_{k=1}^N \widetilde{\mathbf{1}}_{[a,b)}^2 \langle \mu_k x \rangle \sim N \int_0^1 \widetilde{\mathbf{1}}_{[a,b)}^2 (y) \, dy = N \sigma_{a,b}^2 \to \infty \quad \text{a.e.}$$

if $b-a\neq 0$, 1. By Kolmogorov's law of the iterated logarithm [21]

$$\overline{\lim}_{N \to \infty} \frac{1}{\phi_2(B_N)} \left| \sum_{k=1}^N \widetilde{\mathbf{1}}_{[a,b)} \langle \mu_k x \rangle X_k \right| = 1 \quad \text{a.s., a.e.,}$$

we see that (17) holds a.s., a.e. if 0 < b - a < 1. Clearly (17) holds if b - a = 0, 1. Since $S^{2<}$ is countable, we see that (17) holds for all $(a, b) \in S^{2<}$, a.s., a.e. By Fubini's theorem, we have the conclusion. \square

Lemma 5. Suppose that $l \in \mathbb{N}$ and $0 \le i < 2^l$, we have

$$\overline{\lim_{N \to \infty}} \frac{1}{\phi_2(N)} \sup_{0 < c < 2^{-l}} \left| \sum_{k=1}^{N} \widetilde{\mathbf{1}}_{[2^{-l}i, 2^{-l}i + c)} \langle \mu_k x \rangle X_k \right| \le 4 \cdot 2^{-l/2} \quad a.e., \ a.s.$$

Proof. Denote $\mathbf{1}_{[a,b)}(\langle x \rangle)$ simply by $\mathbf{1}_{[a,b)}\langle x \rangle$. By noting

$$b_N = \sum_{k=1}^N \mathbf{1}_{[2^{-l}i,2^{-l}(i+1))} \langle \mu_k x \rangle \sim N \int_0^1 \mathbf{1}_{[2^{-l}i,2^{-l}(i+1))}(y) \, dy = N2^{-l} \quad \text{a.e.}$$

and by following the proof of Lemma 4 of [13], we can prove

$$\overline{\lim}_{N \to \infty} \frac{1}{\phi_2(N)} \sup_{0 < c < 2^{-l}} \left| \sum_{k=1}^{N} \mathbf{1}_{[2^{-l}i, 2^{-l}i + c)} \langle \mu_k x \rangle X_k \right| \le \sqrt{10 \cdot 2^{-l}} \quad \text{a.e., a.s.}$$

Thus together with the law of the iterated logarithm

$$\overline{\lim}_{N \to \infty} \sup_{0 < c < 2^{-l}} \frac{c}{\phi_2(N)} \left| \sum_{k=1}^{N} X_k \right| = \overline{\lim}_{N \to \infty} \frac{2^{-l}}{\phi_2(N)} \left| \sum_{k=1}^{N} X_k \right| \le 2^{-l} \quad \text{a.s.},$$

we have the conclusion.

For $0 \le a < b \le 1$, take l with $b-a > 2^{-l}$ and take the largest i and j such that $2^{-l}i \le a < 2^{-l}j \le b$. Then we have $\mathbf{1}_{[a,b)} = \mathbf{1}_{[2^{-l}i,2^{-l}j)} - \mathbf{1}_{[2^{-l}i,a)} + \mathbf{1}_{[2^{-l}j,b)}$ and $\widetilde{\mathbf{1}}_{[a,b)} = \widetilde{\mathbf{1}}_{[2^{-l}i,2^{-l}j)} - \widetilde{\mathbf{1}}_{[2^{-l}i,a)} + \widetilde{\mathbf{1}}_{[2^{-l}j,b)}$, which implies

$$\max_{0 \leq i < j \leq 2^{l}} \overline{\lim_{N \to \infty}} \frac{1}{\phi_{2}(N)} \left| \sum_{k=1}^{N} \widetilde{\mathbf{1}}_{[2^{-l}i,2^{-l}j)} \langle \mu_{k} x \rangle X_{k} \right| \\
\leq \overline{\lim_{N \to \infty}} \sup_{0 < a < b \leq 1} \frac{1}{\phi_{2}(N)} \left| \sum_{k=1}^{N} \widetilde{\mathbf{1}}_{[a,b)} \langle \mu_{k} x \rangle X_{k} \right| \\
\leq \max_{0 \leq i < j \leq 2^{l}} \overline{\lim_{N \to \infty}} \frac{1}{\phi_{2}(N)} \left| \sum_{k=1}^{N} \widetilde{\mathbf{1}}_{[2^{-l}i,2^{-l}j)} \langle \mu_{k} x \rangle X_{k} \right| \\
+ 2 \max_{0 \leq i \leq 2^{l}} \overline{\lim_{N \to \infty}} \sup_{0 < a \leq 2^{-l}} \frac{1}{\phi_{2}(N)} \left| \sum_{k=1}^{N} \widetilde{\mathbf{1}}_{[2^{-l}i,2^{-l}i+a)} \langle \mu_{k} x \rangle X_{k} \right|.$$

By applying two lemmas above, we have

$$\frac{1}{2} \le \overline{\lim}_{N \to \infty} \sup_{0 \le a < b \le 1} \frac{1}{\phi_2(N)} \left| \sum_{k=1}^N \widetilde{\mathbf{1}}_{[a,b)} \langle \mu_k x \rangle X_k \right| \le \frac{1}{2} + 8 \cdot 2^{-l/2} \quad \text{a.e., a.s.}$$

which implies

$$\overline{\lim}_{N \to \infty} \sup_{0 \le a < b \le 1} \frac{1}{\phi_2(N)} \left| \sum_{k=1}^N \widetilde{\mathbf{1}}_{[a,b)} \langle \mu_k x \rangle X_k \right| = \frac{1}{2} \quad \text{a.e., a.s.}$$
 (18)

By the relation $ND_N\{x_k + y\} = ND_N\{x_k\}$ and (1), we have

$$\eta_i D_{\eta_i}(\mu_{2(i-1)^3+1}x, \mu_{2(i-1)^3+2}x, \dots, \mu_{2i^3}x) = \eta_i D_{\eta_i}\{2kx\} = O((\log \eta_i)^2).$$

Noting $ND_N\{\mu_k x\} \leq \sum_{i=1}^j \eta_i D_{\eta_i}(\mu_{2(i-1)^3+1} x, \mu_{2(i-1)^3+2} x, \dots, \mu_{2i^3} x)$ for $N \in \Delta_i$, we have

$$ND_N\{\mu_k x\} = O\left(\sum_{i=1}^{j} (\log \eta_i)^2\right) = O(N^{1/3} (\log N)^2) = o(\sqrt{N})$$
 a.e.

by $j-1 < (N/2)^{1/3}$. This together with (18) implies

$$\overline{\lim}_{N \to \infty} \sup_{0 \le a < b \le 1} \frac{1}{\phi_2(N)} \left| \sum_{k=1}^N \widetilde{\mathbf{1}}_{[a,b)} \langle \mu_k x \rangle \frac{X_k + 1}{2} \right| = \frac{1}{4} \quad \text{a.e., a.s.}$$
 (19)

Note that $\{\mu_k\}$ and $\{2k-1\}$ are mutually disjoint. Let $\{\lambda_k\}$ be an arrangement in increasing order of $\{\mu_k\} \cup \{2k-1\}$. By $\mu_{2i^3} = 2\nu_i$, we have $\#\{k : \mu_k \leq 2\nu_i\} = 2i^3$ and $\#\{k : 2k-1 \leq 2\nu_i\} = \nu_i$, and thereby we have $\#\{k : \lambda_k \leq 2\nu_i\} = 2i^3 + \nu_i$ and $\lambda_{2i^3+\nu_i} = 2\nu_i$. We set

$$Y_k = \begin{cases} 1 & \lambda_k \notin 2\mathbf{N}, \\ (X_k + 1)/2 & \lambda_k \in 2\mathbf{N}, \end{cases}$$

 $I_N = \#\{k \leq N : \lambda_k \notin 2\mathbf{N}\}, \ J_N = \#\{k \leq N : Y_k = 1, \ \lambda_k \in 2\mathbf{N}\},$ and $H_N = \#\{k \leq N : Y_k = 1\} = I_N + J_N$. We have $I_{2i^3 + \nu_i} = \#\{k \leq 2i^3 + \nu_i : \lambda_k \notin 2\mathbf{N}\} = \#\{k : 2k - 1 \leq 2\nu_i\} = \nu_i$ and $H_{2i^3 + \nu_i} = J_{2i^3 + \nu_i} + \nu_i$. By the law of large numbers we have $J_{2i^3 + \nu_i} \sim \frac{1}{2}\#\{k : \mu_k \leq 2\nu_i\} = i^3$ a.s. By (14), we have

$$\left| G(\psi^2(H_{2i^3+\nu_i})) - G(\psi^2(i^3+\nu_i)) \right| \le \frac{1}{2} |H_{2i^3+\nu_i} - (i^3+\nu_i)| = \frac{1}{2} |J_{2i^3+\nu_i} - i^3|.$$

Dividing by $G(\psi^2(i^3 + \nu_i)) = 2i^2 + e_i$, we have

$$\left| \frac{G(\psi^2(H_{2i^3 + \nu_i}))}{2i^3 + e_i} - 1 \right| \le \frac{1}{2} \left| \frac{J_{2i^3 + \nu_i}}{2i^3 + e_i} - \frac{i^3}{2i^3 + e_i} \right| \to 0 \quad \text{a.s.}$$

Therefore we have $G(\psi^2(H_{2i^3+\nu_i})) \sim 2i^3 + e_i \sim 2i^3 \sim 2J_{2i^3+\nu_i}$ a.s. Since J_N and H_N are increasing, for $N \in [(i-1)^3 + \nu_{i-1}, i^3 + \nu_i]$ we have

$$1 \sim \frac{G(\psi^2(H_{2(i-1)^3 + \nu_{i-1}}))}{2J_{2i^3 + \nu_i}} \le \frac{G(\psi^2(H_N))}{2J_N} \le \frac{G(\psi^2(H_{2i^3 + \nu_i}))}{2J_{2(i-1)^3 + \nu_{i-1}}} \sim 1,$$

and thereby,

$$2J_N \sim G(\psi^2(H_N))$$
 a.s. (20)

By (1), we see $ND_N\{(2k-1)x\} = O((\log N)(\log \log N)^{1+\varepsilon/2})$, which implies $ND_N\{(2k-1)x\} = o((\log N)(\log \log N)^{1+\varepsilon})$ or

$$\lim_{N \to \infty} \sup_{0 \le a < b \le 1} \frac{1}{A_N} \left| \sum_{k \le N : \lambda_k \notin 2\mathbf{N}} \widetilde{\mathbf{1}}_{[a,b)} \langle \lambda_k x \rangle Y_k \right| = 0 \quad \text{a.e., a.s.}$$
 (21)

for $A_N = (\log I_N)(\log \log I_N)^{\varepsilon}$. Since $H_N \geq I_N$, it is valid for $A_N = (\log H_N)(\log \log H_N)^{\varepsilon}$. Because of (11), we see that (21) holds for $A_N = \sqrt{2} \psi(H_N)$.

By (19), we have

$$\overline{\lim}_{N \to \infty} \sup_{0 \le a < b \le 1} \frac{1}{A_N} \left| \sum_{k \le N: \lambda_k \in 2\mathbf{N}} \widetilde{\mathbf{1}}_{[a,b)} \langle \lambda_k x \rangle Y_k \right| = \frac{1}{4} \quad \text{a.e., a.s.}$$
 (22)

for $A_N = \phi_2(\#\{k \leq N : \lambda_k \in 2\mathbf{N}\})$. By $J_N \sim \frac{1}{2}\#\{k \leq N : \lambda_k \in 2\mathbf{N}\}$ a.s., we see that (22) is valid for $A_N = \sqrt{2} \phi_2(J_N) \sim \phi_2(2J_N)$. (20) and $\phi_2^2(G(\psi^2(N))) \sim 2\psi^2(N)$ imply $\phi_2^2(J_N) \sim \phi_2^2(G(\psi^2(H_N)))/2 \sim \psi^2(H_N)$ a.s. Hence (22) holds for $A_N = \sqrt{2} \psi(H_N)$. Combining these, we have

$$\overline{\lim}_{N \to \infty} \sup_{0 \le a < b \le 1} \frac{1}{\sqrt{2} \psi(H_N)} \left| \sum_{k=1}^{N} \widetilde{\mathbf{1}}_{[a,b)} \langle \lambda_k x \rangle Y_k \right| = \frac{1}{4} \quad \text{a.e., a.s.}$$

Denoting by $\{n_k\}$ the subsequence $\{\lambda_k : Y_k = 1\}$, we have (13) a.s.

3. Proof of Theorem 1

By (6), we have $\Psi^2(N) = o(N \log \log \Psi^2(N))$ and $G(\Psi^2(N)) = o(N)$. For any C > 0, we see $G(\phi_C^2(N)) \sim CN$ and hence $G(\Psi^2(N)) \leq G(\phi_C^2(N))$ or $\Psi^2(N) \leq \phi_C^2(N)$ for large N. Since it holds for any C > 0, we see that $\Psi^2(N) = o(\phi_C^2(N))$.

By (6), we can take $N_1 > N_0$ such that for all $N \ge N_1$,

$$(2\sqrt{2}\,\Sigma\Psi(N+1))^2 - (2\sqrt{2}\,\Sigma\Psi(N))^2 \le \frac{1}{2}\log\log(2\sqrt{2}\,\Sigma\Psi(N))^2. \quad (23)$$

Take $c \in (0, \frac{1}{4})$ such that $\phi_c^2(N_1) < (2\sqrt{2} \Sigma \Psi(N_1))^2$ holds. We have $(2\sqrt{2} \Sigma \Psi(N))^2 < \phi_c^2(N)$ for large $N \geq N_1$. Denote N_2 the minimum of such N. Putting

$$\psi(N) = \begin{cases} \phi_c(N) & N < N_2, \\ 2\sqrt{2} \, \Sigma \Psi(N) & N \ge N_2, \end{cases}$$

it is clear that $\psi(N)$ satisfies (10) and (11). As to the condition (12), we first prove it for $\phi_c^2(N)$.

In the case $\log\log(N+1) \ge 1$, i.e. $N \ge 15$, we see $(N+1)(\log\log(N+1) - \log\log N) \le ((N+1)/N)/\log N \le 2/\log 15 < \log\log 15 \le$

$$\begin{split} \log\log N &\text{ and } (N+1)\log\log(N+1) - N\log\log N < 2\log\log N. \text{ If } \\ c\log\log N \leq 1, \text{ then } 2c\log\log N \leq 2 \leq \frac{1}{2}(4\vee\log\log\phi_c^2(N)). \text{ If } \\ c\log\log N \geq 1, \text{ then } 2c\log\log N \leq \frac{1}{2}\log\log N \leq \frac{1}{2}\log\log(cN\log\log N) \leq \frac{1}{2}(4\vee\log\log\phi_c^2(N)). \text{ Therefore, when } \log\log(N+1) \geq 1, \text{ we have } \\ \phi_c^2(N+1) - \phi_c^2(N) \leq 2c\log\log N \leq \frac{1}{2}(4\vee\log\log\phi_c^2(N)). \text{ When } \\ \log\log(N+1) \leq 1, \text{ clearly we have } \phi_c^2(N+1) - \phi_c^2(N) \leq c \leq \frac{1}{4} \leq \frac{1}{2}(4\vee\log\log\phi_c^2(N)). \end{split}$$

By $\psi^2(N_2) - \psi^2(N_2 - 1) \le (2\sqrt{2} \Sigma \Psi(N_2))^2 - \phi_c^2(N_2 - 1) \le \phi_c^2(N_2) - \phi_c^2(N_2 - 1)$ together with (23), we conclude that $\psi(N)$ satisfies (12). Hence we can apply Proposition 3 to have the conclusion.

4. Proof of Theorem 2

Take an integer $d \geq D \vee 2$ to satisfy

$$\Psi^{2}(N+1) - \Psi^{2}(N) = o((\log \log \Psi^{2}(N))^{d}). \tag{24}$$

Put $M_k = 2^{d-1} \binom{k}{d}$, $L_k = \min\{n \mid \Psi^2(n) \ge (2^{d-1}/d!)M_k(\log\log M_k)^d\}$, and $L_k^+ = L_k + M_{k+1} - M_k$.

There exists K_- such that $\max_{N \leq N_0} \Psi(N) < (2^{d-1}/d!) M_k (\log \log M_k)^d$ for all $k \geq K_-$. From now on, we consider only for $k \geq K_-$, for which we have $L_k > N_0$.

By (24) and
$$\Psi^2(L_k-1) < (2^{d-1}/d!)M_k(\log\log M_k)^d$$
, we have

$$(2^{d-1}/d!)M_k(\log\log M_k)^d \le \Psi^2(L_k)$$

$$= o((\log\log \Psi^2(L_k - 1))^d) + \Psi^2(L_k - 1)$$

$$\le o((\log\log(M_k(\log\log M_k)^d)) + (2^{d-1}/d!)M_k(\log\log M_k)^d.$$

 $\Psi^2(L_k)/(2^{d-1}/d!)M_k(\log\log M_k)^d \to 1$, $\log\log\Psi^2(L_k) - \log\log M_k \to 0$ and $\log\log\Psi^2(L_k) \sim \log\log M_k$ in turn. Combining

$$\Psi^{2}(L_{k+1}) - \Psi^{2}(L_{k} - 1)$$

$$\geq (2^{d-1}/d!)(M_{k+1}(\log\log M_{k+1})^{d} - M_{k}(\log\log M_{k})^{d})$$

$$\geq (2^{d-1}/d!)(M_{k+1} - M_{k})(\log\log M_{k+1})^{d}$$

and $\Psi^2(L_{k+1}) - \Psi^2(L_k - 1) = (L_{k+1} - L_k + 1)o((\log \log \Psi^2(L_{k+1}))^d),$ we have

$$\frac{M_{k+1} - M_k}{L_{k+1} - L_k + 1} \le \frac{o((\log \log \Psi^2(L_{k+1}))^d)}{(2^{d-1}/d!)(\log \log M_{k+1})^d} = o(1).$$

Hence we see that there exists a K_0 such that

$$L_{k+1} - L_k > M_{k+1} - M_k$$
 i.e., $L_{k+1} > L_k^+$ $(k \ge K_0)$. (25)

By (24) we have $\Psi^2(N) \leq o(N(\log \log \Psi^2(N))^d)$, Thereby $\log \Psi^2(N) < \log N + d \log \log \log \Psi^2(N)$, and $\log \Psi^2(N) \leq 2 \log N$ or $\Psi^2(N) \leq N^2$ for large N. Hence $\Psi^2(N) = o(N(\log \log N)^d)$. Hence we see $\Psi^2(M_k) = o(M_k(\log \log M_k)^d) = o(\Psi^2(L_k))$. It implies $M_k < L_k$ for large k. Take such $k \geq K_0$ and denote by k_0 . We see $M_{k_0} < L_{k_0}$.

We define an non-decreasing sequence $\{a_k\}$ of positive integers as below. Put $a_1 = \cdots = a_{k_0} = 3$, take a_{k_0+1} large enough to satisfy $a_{k_0+1} \geq a_{k_0}$ and

$$\gamma_{k_0+1}^+ := \frac{1}{2} a_{k_0+1}^{k_0+1} \ge \frac{3}{2} a_{k_0}^{k_0} + (L_{k_0} - 1 - M_{k_0}) =: \gamma_{k_0+1}^-. \tag{26}$$

For $k \geq k_0$, inductively take a_{k+2} large enough to satisfy $a_{k+2} \geq a_{k+1}$ and

$$\gamma_{k+2}^{+} := \frac{1}{2} a_{k+2}^{k+2} \ge \frac{3}{2} a_{k+1}^{k+1} + (L_{k+1} - L_{k}^{+}) =: \gamma_{k+2}^{-}.$$
 (27)

Put $\rho_j = a_j^j$. Since ρ_j satisfies the Hadamard gap condition $\rho_{j+1}/\rho_j \ge a_{j+1} \ge 3$, by the law of the iterated logarithm we have

$$\overline{\lim_{N \to \infty}} \frac{1}{\phi_1(N)} \sum_{j=1}^N \cos 2\pi \rho_j x = \overline{\lim_{N \to \infty}} \frac{1}{\phi_1(N)} \left| \sum_{j=1}^N \cos 2\pi \rho_j x \right| = 1 \quad \text{a.e.}$$
(28)

From this, we drive

$$\overline{\lim}_{N \to \infty} \frac{d!}{\phi_1(N)^d} \sum_{1 \le m_1 < \dots < m_d \le N} \prod_{j=1}^d \cos 2\pi \rho_{m_j} x = 1 \quad \text{a.e.}$$
 (29)

For a function $f(m_1, \ldots, m_d)$ on $\{1, \ldots, N\}^d$, define a signed measure ν on $\{1, \ldots, N\}^d$ by

$$\nu(A) = \sum_{(m_1, \dots, m_d) \in A} f(m_1, \dots, m_d) \quad (A \subset \{1, \dots, N\}^d).$$

Let $J = \{(j,k) \mid 1 \leq j, k \leq N, \ j \neq k\}$. For $(j,k) \in J$, put $A_{(j,k)} = \{(m_1, \ldots, m_d) \in \{1, \ldots, N\}^d \mid m_j = m_k\}$. Putting

$$f(m_1, \dots, m_d) = \prod_{j=1}^d \cos 2\pi \rho_{m_j} x$$

and by applying the inclusion-exclusion principle

$$\nu\left(\{1,\ldots,N\}^d \setminus \bigcup_{j\in J} A_j\right) = \nu(\{1,\ldots,N\}^d) - \sum_{j\in J} \nu(A_j) + \sum_{j_1,j_2\in J: j_1\neq j_2} \nu(A_{j_1}\cap A_{j_2}) - \cdots + \nu\left(\bigcap_{j\in J} A_j\right),$$

we see that

$$\bigg| \sum_{m_1, \dots, m_d \le N: m_j \ne m_k((j,k) \in J)} \prod_{j=1}^d \cos 2\pi \rho_{m_j} x - \left(\sum_{k=1}^N \cos 2\pi \rho_k x \right)^d \bigg|$$

can be bounded by a linear combination of

$$\left| \prod_{j=1}^{\beta} \sum_{k=1}^{N} \cos^{\alpha_j} 2\pi \rho_k x \right| \quad (\alpha_1 + \dots + \alpha_\beta = d, \ \max_{j=1}^{\beta} \alpha_j \ge 2).$$

Note that we can verify

$$0 \le \overline{\lim}_{N \to \infty} \frac{1}{\phi_1(N)^d} \left| \prod_{j=1}^{\beta} \sum_{k=1}^{N} \cos^{\alpha_j} 2\pi \rho_k x \right|$$
$$\le \prod_{j=1}^{\beta} \overline{\lim}_{N \to \infty} \frac{1}{\phi_1(N)^{\alpha_j}} \left| \sum_{k=1}^{N} \cos^{\alpha_j} 2\pi \rho_k x \right| = 0 \quad \text{a.e.}$$

because

$$\overline{\lim}_{N \to \infty} \frac{1}{\phi_1(N)^{\alpha}} \left| \sum_{k=1}^{N} \cos^{\alpha} 2\pi \rho_k x \right| \le \overline{\lim}_{N \to \infty} \frac{N}{\phi_1(N)^{\alpha}} = 0$$

holds for $\alpha \geq 2$. Hence by (28) we have

$$\overline{\lim}_{N \to \infty} \frac{1}{\phi_1(N)^d} \sum_{m_1, \dots, m_d \le N : m_j \ne m_k((j,k) \in J)} \prod_{j=1}^d \cos 2\pi \rho_{m_j} x$$

$$= \overline{\lim}_{N \to \infty} \frac{1}{\phi_1(N)^d} \left(\sum_{k=1}^N \cos 2\pi \rho_k x \right)^d = 1 \quad \text{a.e.}$$

and thereby we see (29).

Let S_0 be a collection of $(b_1, b_2, ...) \in \{-1, 0, 1\}^{\mathbf{N}}$ such that $b_i = 0$ for all large i.

Lemma 6. The mapping $S_0 \ni (b_1, b_2, \dots) \mapsto \sum_{i=1}^{\infty} b_i a_i^i \in \mathbf{Z}$ is injective.

Proof. Because of $\left|\sum_{i=1}^{I-1} b_i a_i^i\right| \leq \sum_{i=1}^{I-1} a_{I-1}^i < \frac{1}{2} a_I^I$, we have

$$\sum_{i=1}^{I} b_i a_i^i \in \left(\left(b_I - \frac{1}{2} \right) a_I^I, \left(b_I + \frac{1}{2} \right) a_I^I \right),$$

and if $b_I \neq 0$, then

$$\sum_{i=1}^{I} b_i a_i^i \in \left(-\frac{3}{2} a_I^I, -\frac{1}{2} a_I^I \right) \cup \left(\frac{1}{2} a_I^I, \frac{3}{2} a_I^I \right) =: C_I. \tag{30}$$

Take $(b_1,b_2,\dots)\in\mathcal{S}_0$ and $(b_1',b_2',\dots)\in\mathcal{S}_0$ and assume $\sum_{i=1}^\infty b_ia_i^i=\sum_{i=1}^\infty b_i'a_i^i$. By putting $I=\max\{i\mid b_i\neq 0\}$ and $I'=\max\{i\mid b_i'\neq 0\}$, then we see that $\sum_{i=1}^\infty b_ia_i^i\in C_I$ and $\sum_{i=1}^\infty b_ia_i^i\in C_{I'}$. By $\frac{3}{2}a_I^I\leq \frac{1}{2}a_{I+1}^{I+1}$, we see that C_I $(I=1,\ 2,\ \dots)$ are mutually disjoint and $\max\{i\mid b_i\neq 0\}=\max\{i\mid b_i'\neq 0\}$. Because $\left(\left(b-\frac{1}{2}\right)a_I^I,\left(b+\frac{1}{2}\right)a_I^I\right)$ $(b\in\mathbf{Z})$ are mutually disjoint, we see $b_I=b_I'$. Hence we have $\sum_{i=1}^{I-1}b_ia_i^i=\sum_{i=1}^{I-1}b_i'a_i^i$. In the same way, we can verify $b_i=b_i'$ for all i< I, and see that the mapping is injective.

By this lemma, we see that

$$\rho_{m_d} + \varepsilon_{d-1}\rho_{m_{d-1}} + \dots + \varepsilon_1\rho_{m_1} \tag{31}$$

with $m_1 < m_2 < \cdots < m_d$ and $\varepsilon_1, \ldots, \varepsilon_d = \pm 1$ are all distinct. Denote by $\{l_i\}$ the arrangement in increasing order of this family.

Note that M_k equals to the number of the sum of the type (31) with $m_1 < m_2 < \cdots < m_d \le k$ and $\varepsilon_1, \ldots, \varepsilon_d = \pm 1$. By (30),

$$l_i \in \left(\frac{1}{2}a_N^N, \frac{3}{2}a_N^N\right), \quad (M_{N-1} < i \le M_N).$$
 (32)

Clearly

$$\prod_{j=1}^{d} \cos 2\pi \rho_{m_j} x = \frac{1}{2^{d-1}} \cos 2\pi (\rho_{m_d} + \varepsilon_{d-1} \rho_{m_{d-1}} + \dots + \varepsilon_1 \rho_{m_1}) x,$$

and

$$\sum_{1 \le m_1 < \dots < m_d \le N} \prod_{j=1}^d \cos 2\pi \rho_{m_j} x = \frac{1}{2^{d-1}} \sum_{k=1}^{M_N} \cos 2\pi l_k x.$$

Hence by (29), we have

$$\overline{\lim}_{N \to \infty} \frac{d!}{2^{d-1}\phi_1(N)^d} \sum_{k=1}^{M_N} \cos 2\pi l_k x = 1 \quad \text{a.e.}$$
 (33)

Put

$$B_N(x) = \max_{M_N + 1 \le Q \le M_{N+1}} \left| \sum_{k=M_N + 1}^{Q} \cos 2\pi l_k x \right|.$$

By the Carleson-Hunt inequality [19] we have

$$\int_0^1 B_N^4(x) \, dx \le C \int_0^1 \left(\sum_{k=M_N+1}^{M_{N+1}} \cos 2\pi l_k x \right)^4 dx$$

where C is an absolute constant. Put

$$C_N(x) = \sum_{m_1, \dots, m_{d-1} \le N-1 : m_i \ne m_j (i \ne j)} \prod_{j=1}^{d-1} \cos 2\pi \rho_{m_j} x.$$

By

$$\sum_{k=M_N+1}^{M_{N+1}} \cos 2\pi l_k x = 2^{d-1} \sum_{m_1 < \dots < m_{d-1} < m_d = N} \prod_{j=1}^d \cos 2\pi \rho_{m_j} x$$
$$= \frac{2^{d-1}}{d!} C_N(x) \cos 2\pi N x$$

we have

$$\int_0^1 B_N^4(x) \, dx \le C \left(\frac{2^{d-1}}{d!}\right)^4 \int_0^1 C_N^4(x)$$

As before, by the inclusion-exclusion principle, we see that $|C_N(x)|$ can be bounded from above by a linear combination of

$$\left| \prod_{j=1}^{\beta} \sum_{k=1}^{N-1} \cos^{\alpha_j} 2\pi \rho_k x \right| \quad (\alpha_1 + \dots + \alpha_\beta = d-1, \alpha_j \ge 1).$$

Put $S = \sum_{j=1}^{\beta} \alpha_j \mathbf{1}(\alpha_j > 1)$ and $T = \sum_{j=1}^{\beta} \mathbf{1}(\alpha_j = 1)$. S + T = d - 1 is clear. For $\alpha \geq 2$, we bound $\left| \sum_{k=1}^{N-1} \cos^{\alpha_j} 2\pi \rho_k x \right| \leq N \leq N^{\alpha/2}$ to have

$$\left| \prod_{j=1}^{\beta} \sum_{k=1}^{N-1} \cos^{\alpha_j} 2\pi \rho_k x \right| \le N^{S/2} \left| \sum_{k=1}^{N-1} \cos 2\pi \rho_k x \right|^T.$$

By applying Theorem 8.20 of Zygmund [28], we have

$$\int_0^1 \left(\prod_{j=1}^{\beta} \sum_{k=1}^N \cos^{\alpha_j} 2\pi \rho_k x \right)^4 dx = O(N^{2S} N^{2T}) = O(N^{2(d-1)}).$$

Therefore we have

$$\int_0^1 B_N^4(x) \, dx = O(N^{2(d-1)}) \quad \text{and} \quad \sum_{N=1}^\infty \int_0^1 \left(\frac{B_N(x)}{N^{d/2}}\right)^4 dx < \infty.$$

By applying the Beppo-Levi Theorem we have $B_N = o(N^{d/2})$ a.e. By noting $M_N \sim N^d 2^{d-1}/d!$ and combining with (33), we have

$$\overline{\lim}_{N \to \infty} \frac{1}{\sqrt{(2^{d-1}/d!)N(\log\log N)^d}} \sum_{i=1}^{N} \cos 2\pi l_i x = 1 \quad \text{a.e.}$$
 (34)

Put

$$n_i = \begin{cases} l_i & \text{if } i \leq M_{k_0}, \\ l_{M_{k_0}} + (i - M_{k_0}) & \text{if } M_{k_0} < i < L_{k_0}, \\ l_{M_k + i + 1 - L_k} & \text{if } L_k \leq i < L_k^+, \\ n_{L_k^+ - 1} + (i + 1 - L_k^+) & \text{if } L_k^+ \leq i < L_{k + 1} \ (k \geq k_0), \end{cases}$$

We can verify that $\{n_k\}$ is strictly increasing. Actually by (32) and (26), we see

$$n_{L_{k_0}} = l_{M_{k_0}+1} > \gamma_{k_0+1}^+ \ge \gamma_{k_0+1}^- > l_{M_{k_0}} + (L_{k_0} - 1 - M_{k_0}) = n_{L_{k_0}-1},$$

and by (27) we see for $k \geq k_0$,

$$n_{L_{k+1}} = l_{M_{k+1}+1} > \gamma_{k+2}^+ \ge \gamma_{k+2}^- > l_{M_{k+1}} + (L_{k+1} - L_k^+) = n_{L_{k+1}-1}.$$

Put $E = [1, M_{k_0}] \cup \bigcup_{k=k_0}^{\infty} [L_k, L_k^+), F = \mathbf{N} \setminus E, E_N = E \cap [1, N],$ $F_N = F \cap [1, N], \text{ and } \eta_N = {}^{\#}E_N. \text{ By } \eta_{L_k} = M_k + 1, \text{ we have } \Psi^2(L_k) \sim (2^{d-1}/d!)\eta_{L_k}(\log\log\eta_{L_k})^d. \text{ By } \Psi^2(L_{k+1}) \sim \Psi^2(L_k), \text{ we have}$

$$\Psi^{2}(N) \sim (2^{d-1}/d!)\eta_{N}(\log\log\eta_{N})^{d}$$
(35)

By (34), we see that

$$\overline{\lim_{N\to\infty}}\,\frac{1}{A_N}\sum_{i\in E_N}\cos 2\pi n_i x=1\quad\text{a.e.}$$

holds for $A_N = \sqrt{(2^{d-1}/d!)\eta_N \log \log \eta_N}$, and by (35) we see that it holds for $A_N = \Psi(N)$.

If $N \in [L_{k-1}^+, L_k)$, we have $\left| \sum_{i=L_{k-1}^+}^N \cos 2\pi n_i x \right| \le 2/|\sin \pi x|$. By $\Psi^2(N) \sim \eta_{L_k} \log \log \eta_{L_k} \sim (2^{d-1}/d!) k^d \log \log k$, we can see that

$$\max_{N \in [L_{k-1}^+, L_k)} \left| \sum_{i \in F_N} \cos 2\pi n_i x \right| \le \frac{2k}{|\sin \pi x|} = o(\Psi(N)) \quad \text{a.e.}$$

Hence we can verify (9).

References

- [1] C. Aistleitner, On the law of the iterated logarithm for the discrepancy of lacunary sequences, Trans. Amer. Math. Soc., **362** (2010), 5967-5982.
- [2] C. Aistleitner & K. Fukuyama, On the law of the iterated logarithm for trigonometric series with bounded gaps, Probab. Theory Related Fields, **154** (2012) 607–620.
- [3] C. Aistleitner & K. Fukuyama, Extremal discrepancy behaviour of lacunary sequences, Monatsh. Math., 177 (2015) 167–184.
- [4] C. Aistleitner & K. Fukuyama, On the law of the iterated logarithm for trigonometric series with bounded gaps II, J. Théor. des Nombres Bordeaux, (to appear).
- [5] C. Aistleitner, K. Fukuyama & Y. Furuya, Optimal bound for the discrepancies of lacunary sequences, Acta Arith., **158** (2013) 229–243.
- [6] C. Aistleitner & G. Larcher, On sequences with prescribed metric discrepancy behavior, Monatsh. Math., (to appear), DOI: 10.1007/s00605-015-0860-2
- [7] C. Aistleitner & G. Larcher, Metric results on the discrepancy of sequence $\{a_n\alpha\}_{n\geq 1}$ modulo one for integer sequence $\{a_n\}$ of polynomial growth, Mathematika, **62** (2016) 478–491.
- [8] R. Baker, Metric number theory and the large sieve, J. London Math. Soc. 24 (1981), 34–40.
- [9] I. Berkes & W. Philipp, The size of trigonometric and Walsh series and uniform distribution mod 1, J. London Math. Soc. (2), **50** (1994) 454–464.
- [10] P. Bohl, Über ein in der Theorie der säkulären Störungen vorkommendes Problem, J. Reine Angew. Math., 135 (1909), 189-283.
- [11] P. Erdős & S. Gál I, On the law of the iterated logarithm I, II, Nederl. Akad. Wetensch. Proc. Ser. A 58 (Indag. Math. 17) (1955) 65–76, 77–84.
- [12] K. Fukuyama, The law of the iterated logarithm for discrepancies of $\{\theta^n x\}$. Acta Math. Hungar., **118** (2008), 155-170.
- [13] K. Fukuyama, A law of the iterated logarithm for discrepancies: non-constant limsup, Monatsh. Math., 160 (2010), 143-149.
- [14] K. Fukuyama, A central limit theorem and a metric discrepancy result for sequence with bounded gaps, Dependence in probability, analysis and number theory, A volume in memory of Walter Philipp, Eds. I. Berkes, R. Bradley, H. Dehling, M. Peligrad, and R. Tichy, Kendrick press, 2010, pp. 233-246.
- [15] K. Fukuyama, Metric discrepancy results for alternating geometric progressions, Monatsh. Math., 171 (2013) 33–63.
- [16] K. Fukuyama, A metric discrepancy result for the sequence of powers of minus two, Indag. Math. (NS), 25 (2014) 487-504.
- [17] K. Fukuyama & M. Yamashita, Metric discrepancy results for geometric progressions with large ratios, Monatsh. Math., (to appear), DOI: 10.1007/s00605-015-0791-y.
- [18] K. Fukuyama, Y. Mitsuhata, Bounded law of the iterated logarithm for discrepancies of permutations of lacunary sequences, Summer School on the Theory of Uniform Distribution, RIMS Kôkyûroku Bessatsu, B29 (2012) 65–88.
- [19] R. A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and their Continuous Analogues, (Proc. Conf. Edwardsville, Ill.,1967) 235-255. Southern Illinois Univ. Press, Carbondale, Ill. 1968.

- [20] A. Khintchine, Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann. 92, (1924) 115-125
- [21] A. Kolmogoroff, Über das Gesetz des iterierten Logarithmus, Math. Ann. 101, (1929) 126-135
- [22] L. Kuipers, H. Niederreiter, Uniform distribution of sequences. Wiley, 1974.
- [23] W. Philipp, Limit theorems for lacunary series and uniform distribution mod 1, Acta Arith. **26**, (1975) 241-251
- [24] W. Sierpiński, Sur la valuer asymptotique d'une certaine somme, Bull. Int. Acad. Polon. Sci. (Cracovie) A, **1910** (1910), 9-11.
- [25] S. Takahashi, An asymptotic property of a gap sequence, Proc. Japan Acad., **38** (1962), 101-104.
- [26] H. Weyl, Über die Gibbssche Erscheinung und verwandte Konvergenzphänomene, Rend. Circ. Mat. Palermo, **30** (1910) 377–407.
- [27] H. Weyl, Über die Gleichverteilung von Zahlen modulo Eins, Math. Ann., 77 (1916), 313–352.
- [28] A. Zygmund, Trigonometric series, Vol I., Cambridge University Press, 1959.

Institute of Statistics, Graz University of Technology, Kopernikus-gasse 24/III, 8010 Graz, Austria

E-mail address: berkes@tugraz.at

Department of Mathematics, Kobe University, Rokko Kobe 657-8501 Japan

E-mail address: fukuyama@math.kobe-u.ac.jp

Department of Mathematics, Kobe University, Rokko Kobe 657-8501 Japan

 $E ext{-}mail\ address: tnishi@math.kobe-u.ac.jp}$