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SOURCE: https://wur-yoda.irods.surfsara.nl/research/?dir=%2Fresearchcaliper%2FTraining_Schools%2FTS3%2FTS3_Grenoble%2FLectures
(G. Pinzon, Laboratoire 3SR Grenoble)

stages of particle detection process: 
grayscale, binary, labelled

contact detection involves assessment 
of the ‘amount of contact’ 

PRACTICAL PROBLEMS - X-RAY TOMOGRAPHY
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initial state 
(Im0)

deformed state 
(Im1)

translation rotation

tracking of the 
kinematics

SOURCE: https://wur-yoda.irods.surfsara.nl/research/?dir=%2Fresearchcaliper%2FTraining_Schools%2FTS3%2FTS3_Grenoble%2FLectures
(G. Pinzon, Laboratoire 3SR Grenoble)

PRACTICAL PROBLEMS - X-RAY TOMOGRAPHY
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CONTINUUM APPROACH 
(uses mathematical models of structureless continuum)

STRUCTURAL (micro-mechanical)  APPROACH 
(obtaining the mechanics of the specimen is based on interactions among 
discrete particles)
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particle representation 
(morphology, material 

properties)

calibration

contact model simulation
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completing system’s mechanics 

microstructural description 

without assumptions about interaction 

model and the need for calibration – only 

from measured (observed) values of 

micro and macro variables obtained in 

experiments?
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fabric =  microstructure, represented via 
directional data

SOURCE: 
https://s3-eu-west-1.amazonaws.com/ppreviews-

plos-725668748/10884671/preview.jpg

fabric tensor 

is a tensorial measure of the
structural arrangement of a 
granular medium. 

For
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CONNECTION POSITION - FABRIC - STRESS

fabric tensors created using interaction directional data, are (easily) connectable to stress tensors

ASUMPTION 1 :

according to the equations, relation is 
valid on different levels of description 

and…

or

1. K. Kanatani, Distribution of directional data and fabric tensors, vol. 12, no. 2, pp. 149–164, 1984.
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FABRIC AND STRESS TENSORS

…and different levels are connectable:
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STRAIN TENSORS – BAGI APPROACH

J

I

strain tensor2

calculation using 
Delaunay network 
guarantees validity 
of 3௥ௗ Newton’s law

complementary area vector

J

I
SOURCE:
O. Durán, N.P. 
Kruyt*, S. Luding, 
Analysis of three-
dimensional micro-
mechanical strain 
formulations for 
granular materials: 
Evaluation of accuracy, 
IJSolStr

2. Bagi, K., Stress and strain in granular assemblies. Mechanics of Materials, 22(3), 165-177, 1996



METHOD
13

INTERACTION FORCES

check stress using Goldhirsch’s3 approach, on the macro level

only contact contribution

interaction forces
obtained using 

contact-force-model-agnostic 
approach, without assumptions about 

particles’ material properties 
complementary 

area vector

3. Goldhirsch, I., Stress, stress asymmetry and couple stress: form discrete particles to continuous fields. Granular Matter, 12:239-252, 2010
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DEGREE OF ANISOTROPY

degree of anisotropy 

1, 2, 3 are the tensor eigen values

fabric tensor is of the 
1st kind, rank 2



EXPERIMENT OVERVIEW
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EXPERIMENT OVERVIEW

SOURCE: G. Pinzon, Laboratoire 3SR Grenoble

triaxial compression
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SIMULATION OVERVIEW

green lentils are approximately oblate spheroids with 𝒂 = 2.33 mm mm and b = 1.8 mm
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AVERAGE BULK STRESSES 

Normalized relative error of  TCGM pressure for 
trials with the same/different imposed stress scaling 

component-wise, over axial strain

Comparison of  TOMO and TCGM pressures for trials with 
the same/different imposed stress scaling component-wise, 

over axial strain
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AVERAGE BULK STRESSES 

Normalized relative error of  TCGM  diagonal average 
bulk stress components for trials with the same/different 
imposed stress scaling component-wise, over axial strain

Comparison of  TOMO and TCGM diagonal average bulk 
stress components for trials with the same/different 

imposed stress scaling component-wise, over axial strain
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AVERAGE BULK STRESSES 

Comparison of  TOMO and TCGM degree of anisotropy 
for trials with the same/different imposed stress scaling 

component-wise, over axial strain

Normalized relative error 
of  TCGM  degree of 

anisotropy for trials with 
the same/different 

imposed stress scaling 
component-wise, over 

axial strain
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AVERAGE BULK STRESSES

Normalized relative error of  TCGM pressure for 
trials with the ‘natural’ and imposed fabric, over axial 

strain

Comparison of  TOMO and TCGM pressures for trials with 
the ‘natural’ and imposed fabric, over axial strain
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AVERAGE BULK STRESSES

Normalized relative error of  TCGM  diagonal average 
bulk stress components for trials with the ‘natural’ and 

imposed fabric, over axial strain

Comparison of  TOMO and TCGM diagonal average bulk 
stress components for trials with the ‘natural’ and imposed 

fabric, over axial strain
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AVERAGE BULK STRESSES

Comparison of  TOMO and TCGM degree of anisotropy 
for trials with the ‘natural’ and imposed fabric, over axial strain

Normalized relative error of  TCGM  degree of 
anisotropy for trials with the ‘natural’ and imposed 

fabric, over axial strain
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o Both imposed stress scaling and bulk fabric have influence on trends of degree of 
anisotropy and stress components curves:

• fabric influences the curve shape of the progression of the degree of anisotropy 
and stress scaling scales it, whereas for macro stress response the influence 
cannot be separated

o Only together both influences yield proper outcome:
• Correct fabric and wrong imposed stress scaling yield wrong outcome
• Wrong fabric and correct imposed stress scaling yield wrong outcome
• Correct fabric and correct imposed stress scaling yield best results

o Choice of contact directional data to construct the fabric influences curve trends of 
both average bulk stress components and degree of anisotropy not too significantly   
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FABRIC AND STRESS TENSORS

…and different levels are connectable:
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AVERAGE BULK STRESSES 

Normalized relative error of  TCGM pressure for 
trials with different contact fabric, over axial strain

Comparison of  TOMO and TCGM pressures for trials with 
different contact fabric, over axial strain
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AVERAGE BULK STRESSES 

Normalized relative error of  TCGM  diagonal average 
bulk stress components for trials with different contact 

fabric, over axial strain

Comparison of  TOMO and TCGM diagonal average bulk 
stress components for trials with different contact fabric,

over axial strain
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AVERAGE BULK STRESSES 

Comparison of  TOMO and TCGM degree of anisotropy 
for trials with different contact fabric, over axial strain

Normalized relative error of  TCGM  degree of 
anisotropy for trials with different contact fabric, over 

axial strain


