

Estimable phase and code biases in the frame of global multi-GNSS processing

Sebastian Strasser, Torsten Mayer-Gürr, Barbara Süsser-Rechberger, Patrick Dumitraschkewitz

Institute of Geodesy, Graz University of Technology, Graz, Austria

EGU General Assembly 2022

2022-05-24

DOI: <u>10.5194/egusphere-egu22-12557</u>

Ĵ

Sharing is

encouraged

Global GNSS processing with the raw observation approach

We want to process all available signals on all available frequencies.

We need to consider

- clock error
- signal biases

at each satellite and receiver.

Each code and phase observation type has its own signal bias.

Transmitter signal biases

Transmitter clock and signal biases are unknown parameters.

Receiver clock and signal biases are also unknown parameters.

Code biases – Local rank deficiencies

Clocks and signal biases cannot be determined absolutely.

Estimable code bias linear combinations at a receiver

Simplified observation equations (one receiver to all satellites)

 $obs[Cfa]_r^s = bias[Cfa]_r + clock_r + iono[f](STEC_r^s)$

- Set up normal equations
- Eliminate clock and ionosphere parameters
- Eigenvalue decomposition

 $\mathbf{N} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T$

New parameters (estimable linear combinations)

 $\mathbf{x} = \mathbf{Q}_2 \overline{\mathbf{x}}$

Same approach as at receiver

Satellite G01 (G063, GPS-IIF)

Code biases – Global rank deficiencies

Global rank deficiencies can again be solved with a similar approach.

Want to know more?

Detailed description can be found in doctoral thesis

Strasser (2022) DOI 10.3217/978-3-85125-885-1

Approach is implemented into our open-source software

Available at GitHub

https://github.com/groops-devs/groops

Now with example scenarios for GNSS processing, LEO orbit determination, gravity field determination, and more.

Reprocessing Multiple GNSS Constellations and a Global Station Network from 1994 to 2020 with the Raw Observation Approach

MONOGRAPHIC SERIES TU GRAZ GEOD 3 GEODESY

Sebastian Strasser

