Understanding Neural Networks with Information Theory

Who are we?

Overview

1 Logistic Regression

2 Neural Networks

3 Understanding NNs

4 Information-Ordered Cumulative Ablation

5 Conclusion

Binary Classification Task

Logistic Regression

- learn class label (red, blue) from features X_{1} and X_{2}

Logistic Regression

- learn class label (red, blue) from features X_{1} and X_{2}
- logistic regression is a linear model

Logistic Regression

- learn class label (red, blue) from features X_{1} and X_{2}
- logistic regression is a linear model
- logistic regression yields class probabilities:

If $X_{1}=x$ and $X_{2}=x^{\prime}$, then the probability that Y is red is p.

Logistic Regression (cont'd)

$$
\mathbb{P}[Y=\mathrm{red}]=\sigma\left(w_{1} \cdot X_{1}+w_{2} \cdot X_{2}+w_{0}\right)
$$

Public Domain by Qef.

- $w_{1} \cdot X_{1}+w_{2} \cdot X_{2}+w_{0}<0$, then Y is more likely to be blue
- w_{1}, w_{2}, and w_{0} define decision boundary
- Task: Learn w_{1}, w_{2}, and w_{0} from data
- (typically: cross-entropy loss + L_{2} regularization)

Logistic Regression (cont'd)

$$
\mathbb{P}[Y=\mathrm{red}]=\sigma\left(w_{1} \cdot X_{1}+w_{2} \cdot X_{2}+w_{0}\right)
$$

Input Output

Binary Classification using Logistic Regression

Binary Classification (slightly more complicated)

Binary Classification (slightly more complicated)

Center
Logistic Regression Fails. . .
... if the data is not linearly separable
enter

Logistic Regression Fails. . .

... if the data is not linearly separable

Idea: Stack multiple linear regression models on top of each other!

Logistic Regression Fails. . .

... if the data is not linearly separable

Idea: Stack multiple linear regression models on top of each other!
Input Hidden Output

Binary Classification with a Neural Network

Center

Binary Classification with a Neural Network

Binary Classification with Neural Networks

Binary Classification with Neural Networks

- Still easy to understand with two input features, hidden layers of width two (2D scatter plot)
- What happens for higher-dimensional input?
- MNIST: input has 784 dimensions
- CIFAR-10: input has 3×1024 dimensions
- ...
- What happens for wider layers?
- e.g., a $100-100$ MLP trained on MNIST?
- ...

Two Approaches to Understand NNs

- Explainable/Interpretable AI:
- What input features led to the decision? ${ }^{1}$
- What training data was most influential for this decision? ${ }^{2}$
- Simplified decision boundaries ${ }^{3}$, extract decision procedure, etc.
- ...
- How do NNs work internally?
- Behavior during training
- Why do NNs generalize so well? ${ }^{4}$
- Importance of individual ("cat") neurons
- . . .

[^0]
Two Approaches to Understand NNs

- Explainable/Interpretable AI:
- What input features led to the decision? ${ }^{1}$
- What training data was most influential for this decision? ${ }^{2}$
- Simplified decision boundaries ${ }^{3}$, extract decision procedure, etc.
- . . .
- How do NNs work internally?
- Behavior during training
- Why do NNs generalize so well? ${ }^{4}$
- Importance of individual ("cat") neurons
- . . .

[^1]
Prerequisite: Mutual Information

$$
I(U ; V)
$$

- is defined for general random variables
- measures statistical dependence between U and V
- generalizes (linear) correlation
- is zero if and only if U and V are independent
- is invariant under invertible maps
- (can be difficult to estimate)

Center

Information Plane Analyses

Information Plane Analyses (cont'd)

Intermediate representation L (NN layer) should
P1 contain sufficient info for classification

- e.g., L should suffice to determine whether X is a cat or a dog

P2 ...but not more info than necessary (compression)

- e.g., L should not contain information about the color of the fur, length of ears, etc.

[^2]
Information Plane Analyses (cont'd)

Intermediate representation L (NN layer) should
P1 contain sufficient info for classification

- e.g., L should suffice to determine whether X is a cat or a dog

P2 ...but not more info than necessary (compression)

- e.g., L should not contain information about the color of the fur, length of ears, etc.

$$
\begin{aligned}
& \mathrm{P} 1 \Leftrightarrow \operatorname{large} I(Y ; L) \\
& \mathrm{P} 2 \Leftrightarrow \operatorname{small} I(X ; L)
\end{aligned}
$$

[^3]
Information Plane Analyses (cont'd)

Intermediate representation L (NN layer) should
P1 contain sufficient info for classification

- e.g., L should suffice to determine whether X is a cat or a dog

P2 ...but not more info than necessary (compression)

- e.g., L should not contain information about the color of the fur, length of ears, etc.

$$
\begin{aligned}
& \mathrm{P} 1 \Leftrightarrow \operatorname{large} I(Y ; L) \\
& \mathrm{P} 2 \Leftrightarrow \operatorname{small} I(X ; L)
\end{aligned}
$$

Idea has been successfully applied in NN training ${ }^{5,6,7}$

[^4]
Information Plane Analyses (cont'd)

Estimate how $I(X ; L)$ and $I(Y ; L)$ evolve during NN training ${ }^{8}$:

[^5]
Information Plane Analyses (cont'd)

Hot Topic, but many open questions:

- requires estimating mutual information, which is problematic ${ }^{9}$
- connection to generalization not fully clear, e.g. ${ }^{10}$
- information plane appears to show geometric picture (clustering) ${ }^{11}$
- current results in the literature are inconsistent (is there a compression phase?, etc. $)^{12}$
- ongoing debate

[^6]Center

Bounds on Generalization Gap

i.e., difference between expected and estimated loss as a function of size m of dataset $\mathcal{D}=\left\{D_{1}, \ldots, D_{m}\right\}$

[^7]
Bounds on Generalization Gap

i.e., difference between expected and estimated loss as a function of size m of dataset $\mathcal{D}=\left\{D_{1}, \ldots, D_{m}\right\}$
$>\propto \sqrt{I(X ; L)} \frac{\log m}{\sqrt{m}}$, see 13

- $\left(2^{I(X ; L)}+\log (2 / \delta)\right) /(2 m)$ with probability $1-\delta, \operatorname{see}^{14}$

[^8]
Bounds on Generalization Gap

i.e., difference between expected and estimated loss as a function of size m of dataset $\mathcal{D}=\left\{D_{1}, \ldots, D_{m}\right\}$
$>\propto \sqrt{I(X ; L)} \frac{\log m}{\sqrt{m}}, \operatorname{see}^{13}$

- $\left(2^{I(X ; L)}+\log (2 / \delta)\right) /(2 m)$ with probability $1-\delta, \operatorname{see}^{14}$
$>\propto \sqrt{\frac{1}{m} I(\mathcal{D} ; A(\mathcal{D}))}, \mathrm{see}^{15}$
$-\propto \frac{1}{m} \sum_{i=1}^{m} \sqrt{I\left(D_{i} ; A(\mathcal{D})\right)}, \mathrm{see}^{16}$
- extensions to SGD-type training ${ }^{17}$

[^9]
Bounds on Generalization Gap

i.e., difference between expected and estimated loss as a function of size m of dataset $\mathcal{D}=\left\{D_{1}, \ldots, D_{m}\right\}$
$-\propto \sqrt{I(X ; L)} \frac{\log m}{\sqrt{m}}$, see 13

- $\left(2^{I(X ; L)}+\log (2 / \delta)\right) /(2 m)$ with probability $1-\delta$, see ${ }^{14}$
$>\propto \sqrt{\frac{1}{m} I(\mathcal{D} ; A(\mathcal{D}))}, \mathrm{see}^{15}$
$\downarrow \propto \frac{1}{m} \sum_{i=1}^{m} \sqrt{I\left(D_{i} ; A(\mathcal{D})\right)}$, see 16
- extensions to SGD-type training ${ }^{17}$
- see also ${ }^{18}$

[^10]
What about Individual Neurons?

center

What about Individual Neurons? (cont'd)

How important is the ℓ-th neuron in the i-th layer?

What about Individual Neurons? (cont'd)

How important is the ℓ-th neuron in the i-th layer?

- compute mutual information $I\left(Y ; L_{i, \ell}\right)$
- much easier to estimate than $I\left(Y ; L_{i}\right)$ (whole layer) or $I\left(X ; L_{i}\right)(X$ is high-dimensional/continuously distributed)
- Hypothesis: Large values indicate that the ℓ-th neuron in the i-th layer is important for the task

Information-Ordered Cumulative Ablation ${ }^{19}$

- Ablation: Turning off individual neurons, i.e., set $L_{i, \ell}=0$

[^11]
Information-Ordered Cumulative Ablation ${ }^{19}$

- Ablation: Turning off individual neurons, i.e., set $L_{i, \ell}=0$
- Cumulative Ablation: Turn off more and more neurons and see how, e.g., classification accuracy is affected

[^12]
Information-Ordered Cumulative Ablation ${ }^{19}$

- Ablation: Turning off individual neurons, i.e., set $L_{i, \ell}=0$
- Cumulative Ablation: Turn off more and more neurons and see how, e.g., classification accuracy is affected
- Information-Ordering: Turn off the k neurons with lowest (highest) mutual information and compare with turning off neurons randomly

[^13]
MNIST $100-100$, L_{2} regularization

MNIST 100 - 100, Dropout

What about Individual Neurons? (cont'd)

How important is the ℓ-th neuron in the i-th layer?

- it seems as if neurons with high mutual information are not useful/hurting classification performance
- reproduces results from ${ }^{20}$
${ }^{20}$ Morcos et al., On the importance of single directions for generalization, 2018

What about Individual Neurons? (cont'd)

How important is the ℓ-th neuron in the i-th layer?

- it seems as if neurons with high mutual information are not useful/hurting classification performance
- reproduces results from ${ }^{20}$

Let's take a closer look!

[^14]
MNIST 100 - 100, Dropout, Layer 1

MNIST 100 - 100, Dropout, Layer 2

MNIST 100 - 100, Dropout

What about Individual Neurons? (cont'd)

How important is the ℓ-th neuron in the i-th layer?

- it seems as if neurons with high mutual information are not useful/hurting classification performance ${ }^{21}$
- BUT: neurons with high mutual information are useful within a given layer
- layers have different distribution of mutual information values
- \Rightarrow Simpson's paradox

[^15]FashionMNIST 100 - 100, L_{2}, Layer 1

FashionMNIST 30 - 30, L_{2}, Layer 1

CIFAR-10 $250-500-250-500, L_{2}$, Layer 3

Information-Ordered Cumulative Ablation

What else can we learn?

CIFAR-10 $250-500-250-500, L_{2}$, Layer 3

- 40 neurons with highest mutual information suffice
- removing 60 neurons with highest mutual information destroy performance
- ≈ 200 neurons are inactive

CIFAR-10 $250-500-250-500, L_{2}$, Layer 4

- 100 neurons with highest mutual information suffice
- removing 250 neurons with highest mutual information destroy performance
- ≈ 250 neurons are inactive
- $\approx 50-150$ neurons are redundant

More Insights?

- beyond mutual information
- beyond ReLU activation functions
- beyond L_{2} regularization
- effects of quantization
- ...
arXiv:1804.06679v3 [cs.LG]

Conclusion

NNs are difficult to understand, but

information theory is powerful:

- Bounds on the generalization error
- Investigating learning behavior
- Interplay between learning and geometric compression
- Importance of individual neurons via ordered cumulative ablation
- neurons with large mutual information (within a layer) are important for classification
- mutual information values differ between layers
- cumulative ablation reveals inactive, redundant, and synergistic neurons

Conclusion

NNs are difficult to understand, but

information theory is powerful:

- Bounds on the generalization error
- Investigating learning behavior
- Interplay between learning and geometric compression
- Importance of individual neurons via ordered cumulative ablation
- neurons with large mutual information (within a layer) are important for classification
- mutual information values differ between layers
- cumulative ablation reveals inactive, redundant, and synergistic neurons

Thanks for your attention!

[^0]: ${ }^{1}$ Montavon, Samek, and Müller, "Methods for interpreting and understanding deep neural networks", 2018
 ${ }^{2}$ Koh and Liang, "Understanding Black-box Predictions via Influence Functions", 2017
 ${ }^{3}$ Ribeiro, Singh, and Guestrin, ""'Why should I trust you?" Explaining the predictions of any classifier", 2016
 ${ }^{4}$ Frankle and Carbin, "The Lottery Ticket Hypothesis: Training Pruned Neural Networks",

[^1]: ${ }^{1}$ Montavon, Samek, and Müller, "Methods for interpreting and understanding deep neural networks", 2018
 ${ }^{2}$ Koh and Liang, "Understanding Black-box Predictions via Influence Functions", 2017
 ${ }^{3}$ Ribeiro, Singh, and Guestrin, ""'Why should I trust you?" Explaining the predictions of any classifier", 2016
 ${ }^{4}$ Frankle and Carbin, "The Lottery Ticket Hypothesis: Training Pruned Neural Networks",

[^2]: ${ }^{5}$ Alemi et al., "Deep Variational Information Bottleneck", 2017
 ${ }^{6}$ Kolchinsky, Tracey, and Wolpert, "Nonlinear Information Bottleneck", 2019
 ${ }^{7}$ Fischer, "The Conditional Entropy Bottleneck", 2020

[^3]: ${ }^{5}$ Alemi et al., "Deep Variational Information Bottleneck", 2017
 ${ }^{6}$ Kolchinsky, Tracey, and Wolpert, "Nonlinear Information Bottleneck", 2019
 ${ }^{7}$ Fischer, "The Conditional Entropy Bottleneck", 2020

[^4]: ${ }^{5}$ Alemi et al., "Deep Variational Information Bottleneck", 2017
 ${ }^{6}$ Kolchinsky, Tracey, and Wolpert, "Nonlinear Information Bottleneck", 2019
 ${ }^{7}$ Fischer, "The Conditional Entropy Bottleneck", 2020

[^5]: ${ }^{8}$ Shwartz-Ziv and Tishby, Opening the Black Box of Deep Neural Networks via Information, 2017

[^6]: ${ }^{9}$ Amjad and Geiger, "Learning Representations for Neural Network-Based Classification Using the Information Bottleneck Principle", 2020
 ${ }^{10}$ Saxe et al., "On the Information Bottleneck Theory of Deep Learning", 2018
 ${ }^{11}$ Goldfeld et al., "Estimating Information Flow in Deep Neural Networks", 2019
 ${ }^{12}$ Geiger, On Information Plane Analyses of Neural Network Classifiers - A Review, 2020

[^7]: ${ }^{13}$ Vera, Piantanida, and Vega, "The Role of the Information Bottleneck in Representation Learning", 2018
 ${ }^{14}$ Shwartz-Ziv, Painsky, and Tishby, Representation Compression and Generalization in Deep Neural Networks, 2018
 ${ }^{15} \mathrm{Xu}$ and Raginsky, "Information-theoretic analysis of generalization capability of learning algorithms", 2017
 ${ }^{16} \mathrm{Bu}$, Zou, and Veeravalli, "Tightening Mutual Information Based Bounds on Generalization Error", 2019
 ${ }^{17}$ Pensia, Jog, and Loh, "Generalization Error Bounds for Noisy, Iterative Algorithms", 2018
 ${ }^{18}$ Achille and Soatto, "Emergence of Invariance and Disentanglement in Deep Representations", 2018

[^8]: ${ }^{13}$ Vera, Piantanida, and Vega, "The Role of the Information Bottleneck in Representation Learning", 2018
 ${ }^{14}$ Shwartz-Ziv, Painsky, and Tishby, Representation Compression and Generalization in Deep Neural Networks, 2018
 ${ }^{15} \mathrm{Xu}$ and Raginsky, "Information-theoretic analysis of generalization capability of learning algorithms", 2017
 ${ }^{16} \mathrm{Bu}$, Zou, and Veeravalli, "Tightening Mutual Information Based Bounds on Generalization Error", 2019
 ${ }^{17}$ Pensia, Jog, and Loh, "Generalization Error Bounds for Noisy, Iterative Algorithms", 2018
 ${ }^{18}$ Achille and Soatto, "Emergence of Invariance and Disentanglement in Deep Representations", 2018

[^9]: ${ }^{13}$ Vera, Piantanida, and Vega, "The Role of the Information Bottleneck in Representation Learning", 2018
 ${ }^{14}$ Shwartz-Ziv, Painsky, and Tishby, Representation Compression and Generalization in Deep Neural Networks, 2018
 ${ }^{15} \mathrm{Xu}$ and Raginsky, "Information-theoretic analysis of generalization capability of learning algorithms", 2017
 ${ }^{16} \mathrm{Bu}$, Zou, and Veeravalli, "Tightening Mutual Information Based Bounds on Generalization Error", 2019
 ${ }^{17}$ Pensia, Jog, and Loh, "Generalization Error Bounds for Noisy, Iterative Algorithms", 2018
 ${ }^{18}$ Achille and Soatto, "Emergence of Invariance and Disentanglement in Deep Representations", 2018

[^10]: ${ }^{13}$ Vera, Piantanida, and Vega, "The Role of the Information Bottleneck in Representation Learning", 2018
 ${ }^{14}$ Shwartz-Ziv, Painsky, and Tishby, Representation Compression and Generalization in Deep Neural Networks, 2018
 ${ }^{15} \mathrm{Xu}$ and Raginsky, "Information-theoretic analysis of generalization capability of learning algorithms", 2017
 ${ }^{16} \mathrm{Bu}$, Zou, and Veeravalli, "Tightening Mutual Information Based Bounds on Generalization Error", 2019
 ${ }^{17}$ Pensia, Jog, and Loh, "Generalization Error Bounds for Noisy, Iterative Algorithms", 2018
 ${ }^{18}$ Achille and Soatto, "Emergence of Invariance and Disentanglement in Deep Representations", 2018

[^11]: ${ }^{19}$ Liu, Amjad, and Geiger, Understanding Individual Neuron Importance Using Information Theory, 2018

[^12]: ${ }^{19}$ Liu, Amjad, and Geiger, Understanding Individual Neuron Importance Using Information Theory, 2018

[^13]: ${ }^{19}$ Liu, Amjad, and Geiger, Understanding Individual Neuron Importance Using Information Theory, 2018

[^14]: ${ }^{20}$ Morcos et al., On the importance of single directions for generalization, 2018

[^15]: ${ }^{21}$ Morcos et al., On the importance of single directions for generalization, 2018

