
Secure and Privacy-Preserving Proxy Voting System

Bernd Zwattendorfer, Christoph Hillebold, and Peter Teufl
Institute for Applied Information Processing and Communications (IAIK)

Graz University of Technology, Austria
{bernd.zwattendorfer, peter.teufl}@iaik.tugraz.at, christoph.hillebold@student.tugraz.at

Abstract— Voting is a frequent and popular decision making
process in many diverse areas, targeting the fields of e-
Government, e-Participation, e-Business, etc. In e-Business,
voting processes may be carried out e.g. in order management,
inventory management, or production management. In this
field, voting processes are typically based on direct voting.
While direct voting enables each eligible voter to express her
opinion about a given subject, representative voting shifts this
power to elected representatives. Declarative or proxy voting
(based on liquid democracy) is a voting process situated in
between these two approaches and allows a voter to delegate
her voting power to a so called proxy, who actually casts the
votes for all the represented voters. The most interesting aspect
of this approach is that voters have the opportunity to skip the
direct involvement when they trust the proxy to act within
their best interest. Liquid democracy and proxy voting has
been implemented in various software tools that facilitate the
voting process. However, the current systems lack security
features typically required by electronic voting systems.
Therefore, we present a system that integrates cryptographic
functionality and relies on qualified signatures created by the
Austrian citizen card to solve the current security issues. This
system can support e-Business processes and applications in
decision making, enabling the delegation of votes.

Keywords- liquid democracy, proxy voting, Austrian citizen
card, security, strong authentication, e-voting

I. INTRODUCTION

Voting is a frequent and popular decision making process
in many diverse areas, targeting the fields of e-Government,
e-Participation, e-Business, etc. In e-Business, voting
processes may be carried out e.g. in order management,
inventory management, or production management. Liquid
democracy [1] [2] is a method that can be used for decision-
making, also in e-Business.. The most interesting property –
when compared to most conventional electronic voting
systems – is the capability to allow users (voters) to delegate
their voting power to others. In liquid democracy, decision-
making also includes discussions, finding election issues,
and holding elections [2] [3]. In our work, the main emphasis
is placed on proxy voting, which deals with the aspects of
direct voting or vote delegation.

In general, there are two kinds of users in a proxy voting
system [1]:

Voter: A voter is a user of the system, who is allowed to
vote for elections. The voter could either vote directly on an
election or delegate her voting power to another user called
proxy. A voter must typically vote secretly.

Proxy: A proxy is a voter that wants to get delegations
from other voters. Delegations are kept secretly and are not
public. Like a user, also a proxy could either vote directly or
delegate her voting power to another proxy. A proxy can be
compared with a politician whose opinion must be public.
Therefore a proxy cannot vote secretly and has to publish her
vote.

Proxy voting allows voters either to vote directly or to
delegate their voting power to a proxy. Delegations could be
solved in two ways:

1. Either the voter copies the published vote of the
chosen proxy (client-based) or

2. the voter delegates her voting power permanently to
the proxy (server-based).

In addition, users, who delegated their voting power to a
proxy, might change their opinion and thereby deviate from
the proxy’s behavior. Even more problematic, a proxy could
change her mind just before the election process and thus
cast a different vote than her users expected. Hence, voters
should be able to revoke their delegation and vote by
themselves.

Several proxy voting systems supporting the described
functionality already exist and are described in Section II.
However, all of these systems usually rely on web-based
solutions deployed on a single server. The drawback of a
single server solution is that – if this server fails – the whole
system will be compromised. Additionally, the use of simple
web browsers is critical as they usually do not support
required cryptographic functions to securely use the proxy
voting system out of the box. Furthermore, all of those
systems do not support unique identification and
authentication. This requirement is particularly essential to
avoid casting multiple votes by a single person. A recent
demonstration by a German journalist [4] shows that existing
systems do not always fulfill these requirements. Thereby,
she was able to create two accounts within the Liquid
Feedback system (see Section II) and was able to vote twice.

To bypass these issues, we propose a new architecture for
a proxy voting system, which relies on multiple servers. In
addition, instead of a web browser we rely on a Desktop-
based application, which integrates the required
cryptographic functionality to make our proxy voting system
secure. Finally, we employ qualified signatures by using use
the Austrian citizen card to uniquely identify citizens and
thus to avoid multiple voting possibilities. Although our
system identifies citizens uniquely, our distributed
architecture relying on multiple servers, and the implemented
cryptographic processes allow us to preserve citizens’
privacy and support anonymous voting.

bzwattendorfer
Typewritten Text
Bernd Zwattendorfer, Christoph Hillebold, and Peter Teufl - "Secure and Privacy-Preserving Proxy Voting System" - IEEE 10th International Conference on e-Business Engineering, 2013, pp. 472-477
URL:
© IEEE 2013

II. RELATED WORK

In this section we briefly describe related work dealing
with liquid democracy and proxy voting. Other
communication tools to be used in liquid democracy can be
found in [5]. All subsequent projects are single instance
solutions, web-based, and require a web browser as user
client. For authentication simple username/password
schemes are applied. While they basically fulfill the
functional requirements of proxy voting systems, they are
not able to meet all security requirements identified in
Section III.

A. Votorola

Votorola 1 is a liquid democracy project published by
“zelea.com”. Votorola is based on a Wiki platform, where
any user can create and modify drafts. Users can discuss and
vote for changes of those drafts, and – after a certain period –
finally only some of the original drafts survive. At the end,
the draft or user with the most votes or supporting delegates
wins. If a user possesses more than one vote, separation of
the voting power is not supported. She rather has to delegate
all her votes to one single proxy at once. The architecture of
the Votorola project is designed in a modular way. I.e.,
single modules (e.g. authentication module) can easily be
replaced [6]. Currently, authentication is implemented using
OpenID2 or via e-mail, where the e-mail-address is published
on the website. One main feature of Votorola constitutes the
replication of votes. Here, votes can be replicated between
several Votorola systems with different modules for data
protection and backup purposes. However, it is also possible
to replicate votes to an instance of another liquid democracy
system such as Adhocracy [7], which will be described next.

B. Adhocracy

Adhocracy3 is an open source liquid democracy project
developed by the association “Liquid Democracy e.V.”4. In
general, Adhocracy is a free participation platform enabling
organizations, its members, and any interested citizen the
possibility for an open and transparent democratic
communication. Additionally, Adhocracy offers citizens an
information platform to several activities, discussions, or
decisions of organizations. To achieve this vision of easy
civic participation, the main pillars of Adhocracy are
transparency, autonomy, and modularity [8]. Referring to the
objective of transparency, all decisions or votes are
transparent to arbitrary users all the time. In addition, all
discussions or articles are publicly available. Referring to
autonomy, all groups or discussion forums are managed
autonomically and do not require a group manager.
Proposals or comments to individual topics are rated by the
members to evaluate their relevance. Finally, Adhocracy
provides modularity to organizations. Groups and forms of
decision making can be easily customized to individual
requirements.

1 http://zelea.com/project/votorola/home.html
2 http://openid.net
3 https://adhocracy.de
4 https://liqd.net

C. Liquid Feedback

Liquid Feedback 5 constitutes also an open source
platform enabling decision making based on liquid
democracy. Liquid Feedback is developed by the “Public
Software Group”. In general, Liquid Feedback respects the
following concepts [9]: liquid democracy (votes can be
delegated by topic), proposition development process (return
structured feedback for an initiative), preferential voting
(users can state preferences instead of simple yes/no votes),
and interactive democracy (use of interactive electronic
media). Liquid Feedback can be used by several entities and
for several use cases. For instance, political parties,
associations, NGOs, governments, or even corporate bodies
rely on the functionality of Liquid Feedback.

III. REQUIREMENTS

In this section we summarize the requirements which
have to be met by a secure and privacy-preserving proxy
voting system. These requirements are aligned to
requirements of conventional electronic voting systems [10]
[11]. The main difference of proxy voting systems compared
to conventional electronic voting systems is the support of
vote delegation.

A. Functional Requirements

Voting: The most important feature of every electronic
voting system is the voting process itself. Voters can vote for
an election and cast their ballot. The voter must not be able
to vote twice for the same election.

Vote Delegation: Proxy voting requires the ability to
delegate the voter's voting power to a proxy. A user, who
delegated her voting power to a proxy, is not allowed to cast
her own vote in the respective election. The voting power of
the chosen proxy is (virtually) increased. We have identified
two basic principles how delegation of votes can be
achieved. A proxy voting system should at least support one
of these principles.

1. Server-based delegation: In this model, vote delegation is
carried out via a server. Basically, the voter selects a proxy
for delegation and encodes the delegation information
similar to a conventional vote. If the proxy casts her vote, the
users' delegated votes automatically count for the same
answer as the proxy's vote. A proxy could also delegate her
voting power to another proxy transitively. The advantage of
this approach is that the user’s voting power can be delegated
even if the user is not online. However, the disadvantage of
this approach is that the proxy could change her mind
without notice of the user. The user would notice such a
change only if she has an online connection to the server. In
addition, it is possible to find out how many delegations a
proxy has, because this information has to be stored on the
server. This could support corruption and blackmail because
the voting power of the proxy could be made public.

2. Client-based delegation: In this approach, vote delegation
is carried out on the user’s client. The voter selects a proxy

5 http://www.public-software-group.org/liquid_feedback

to delegate her votes and stores the information locally. After
the proxy has published her vote, the voter can download and
copy it. This requires the voter to be online at least once to
set the vote during an election period. The advantage of this
approach is that it is not possible to find out who is voting
for which proxy as every delegation is made locally.
Additionally, the voter is able to intervene and change her
decision any time by revoking the delegation locally.
However, the downside of this approach is that delegation
cannot be placed automatically such as in the server-based
approach.

Rejection and Revocation of Votes: If a voter does not
agree anymore with the opinion of her proxy, she should be
able to revoke the delegation of her vote until the end of the
election. After revocation, the user’s old delegation or vote
becomes invalid and she will be able to vote another time
again. If the system relies on the server-based delegation
approach, then the deadline for proxies being able to change
their vote must be some time before the actual end of the
election. Voters then have sufficient time to revoke their
delegation and vote directly or delegate their vote to another
proxy. In the client-based delegation approach, voters can
revoke their delegation locally as long as the election time
frame is open.

Determine the Election Winner: There are several models
to count the votes and find out the winner of an election.
Note that within liquid democracy the winner is a specific
answer to an election and not a politician. In a liquid
democracy proxy voting system, different methods for
determining an election winner are available [12]. We just
highlight three, which we consider most important.

1. Plurality Voting System: In this model, the answer
receiving the most votes wins.
2. Preferential Voting System: In this model, the voter can
state preferences for each answer. Still, the answer with the
most weighed votes wins.
3. Two-round Voting System: In the first round, more than
two possible answers are available, which can be voted for.
After the first round, only the two answers having received
the most votes remain. In the second round, only two
answers can be voted for and again the answer with the most
votes wins.

B. Security Requirements

Anonymity: Users must be able to vote anonymously all the
time. In addition, user must not be linkable by any other
means.

Secrecy: Nobody should be able to see the content of a
ballot until the end of the election. Otherwise, voters could
follow the proceeding of the election and use the
information to manipulate the result either actively by
placing the own vote in dependence of the current situation
or passively by manipulating others through statistics.

Integrity: No single entity of the proxy voting system
should be able to manipulate the system by generating votes
without legitimation, modifying valid votes, deleting valid
votes, invalidating votes, rejecting votes without
legitimation, using circular transactional delegations or
rejecting or voting after the deadline.

Authenticity: Only people that are allowed to vote should
actually be able to vote and no user should be able to vote
more than once per election. Therefore, users must be
uniquely identified and securely authenticated by the voting
system.

Verifiability: Everyone should be able to audit and to verify
if the voting system works correctly. Thereby, users should
be able to check if their own votes are still present in the
voting system. Additionally, users (by using their client)
must be able to count all valid votes to verify the official
result. Therefore, all votes – not identifiable or linkable to a
certain user – must be publicly readable after the election.

IV. SYSTEM ARCHITECTURE

In this section we propose a new architecture for a proxy
voting system to meet the identified requirements. The
architecture consists of at least three separated components:
one Election Server, one or more Ballot Signers, and
multiple Voting Servers. Users access the proxy voting
system via a User Client. Fig. 1 illustrates an overview of
our proposed proxy voting system architecture. Solid arrows
symbolize network connections with a server considered to
be trustworthy. The dashed arrow between the User Client
and the Voting Server also symbolizes a network connection,
but the User Client may not trust the Voting Server.

Fig. 1. Architecture of the proxy voting system

A. Components of the System Architecture

In the following, we describe our architecture and the
individual components in more detail.

Election Server: The Election Server is mainly responsible
for providing general information to the individual users. For
instance, this includes information on what elections are
active and when the elections will end. Additionally, the
Election Server publishes the official results of ended
elections. The Election Server also manages a table or
database of all available Ballot Signers and Voting Servers.

Ballot Signer: The Ballot Signer authenticates the user and
checks whether the user is allowed to take part at a certain
election. Also, the Ballot Signer validates the user’s vote
without being able to inspect the user’s decision. It is
possible to set up and operate more than one Ballot Signer,
e.g. one for each federal state of a country or one for each
organization that is allowed to participate in the system. This
may help in making regional or partial statistics and limits
the power of on single Ballot Signer.

Voting Servers: The Voting Servers have to store encrypted
votes, which have been issued in encrypted format by the
User Client. The encrypted vote is actually not secret but
cannot be linked to a specific user. Therefore, anybody could
set up and publish her own Voting Server. The Voting
Servers count all valid votes. If a Voting Server accepts a
vote from a user, the vote is signed by the Voting Server and
returned to the user. Hence, it is not possible for a Voting
Server to delete a vote without detection, because multiple
Voting Servers store the same vote and the user has a proof
(the vote signed by the Voting Server) that the Voting Server
has accepted the vote.

B. Supported Functionality

To illustrate the functionality of our proxy voting system,
we describe relevant processes to be carried out in a system
supporting delegation of votes. In particular, we describe the
voting process itself, the revocation of votes, counting of
votes, and the process of verifying the system.

1) Voting and vote delegation

Basically, the aim of the voting-process is to publish a
valid vote. To do that, the user must be authenticated by the
Ballot Signer, which will sign the vote. Then the User Client
can distribute the signed vote to other Voting Servers.

Fig. 2 shows a detailed sequence diagram of the complete
voting and delegation process involving all components. We
will describe the individual process steps in the following
taking into account the numeration of Fig. 2.

.

Fig. 2. Voting and Delegation Process Flow

1. Get election information

The User Client queries the Election Server to get
available election information.

2. Return election information

The User Client receives election information form the
Election Server. The received information includes active
elections with answer possibilities, the ballot, and an
encryption key for the individual election. Additionally, the
information on election deadlines or the contents of the
election is provided. To prevent manipulation of these data,
it is signed by the Election Server.

3. Verify election information

The User Client verifies the information and the
signature received from the Election Server.

4. Delegate vote, encrypt and sign ballot

The user selects the desired election and now has the
desire to delegate her vote. The User Client retrieves the
votes of all proxies from a Voting Server.

For a client-based delegation, the user selects the proxy
she wants to delegate her vote and the User Client imitates
the vote by directly voting for the same answer. For a server-
based delegation, the user specifies a start and end date of
the delegation and specifies the proxy she wants to support.

For both delegation approaches, the user places the vote
or delegation locally, and encrypts the filled ballot
(encrypted-ballot) using the public encryption key received
from the Election Server 6 . Finally, the user signs the
encrypted-ballot using the signature functionality of her
national eID. In our implementation, we relied on the
Austrian citizen card, the official eID-system in Austria [13].

5. Authenticate

The user authenticates at the Ballot Signer using her
national eID to get uniquely identified.

6. Request signed ballot

The User Client sends the encrypted and signed ballot to
the Ballot Signer. The Ballot Signer verifies the user’s
signature. If the signature is valid and the user has not voted
for the specific election yet, the Ballot Signer will sign the
encrypted ballot. If the user has already placed a vote, the
Ballot Signer will deny the request. Before signing the
encrypted vote, the Ballot Signer removes the user’s
signature to further ensure anonymity. Additionally, the
Ballot Signer generates a rejection code which is also signed
by the Ballot Signer. This rejection code will not be stored
by the Ballot Signer.

7. Return signed ballot

The Ballot Signer returns the signed ballot and the
rejection code to the User Client.

8. Verify signed ballot

The User Client verifies the signatures of the signed
ballot and checks if the signed content is still the same as the
original encrypted ballot sent in Step 6.

6 Note that a non-deterministic encryption scheme is used here.

9. Submit signed encrypted-ballot

The User Client submits the encrypted-ballot to a random
Voting Server that stores the ballot until election end. The
Voting Server again signs the ballot and sends it back to the
User Client. This proves the user that the Voting Server has
accepted the vote. If the vote might vanish from the Voting
Server, the user knows that the Voting Server may be
corrupted. The User Client can submit the signed encrypted-
ballot to further Voting Servers to have redundancy in case a
single Voting Server is corrupted or out of service.

10. Return proof of submission

The Voting Server returns the signed and accepted vote to
the User Client warranting the submission.

2) Rejecting and Revoking of Votes

If the user changes her mind and does not want to support
her selected proxy anymore, she should be able to revoke the
delegation of her voting power. To reject a vote or revoke a
delegation, the User Client first authenticates at the Ballot
Signer. Then the User Client sends the signed rejection code
(generated and signed by the Ballot Signer during the voting
process) to the Ballot Signer. The Ballot Signer verifies its
own issued signature of the rejection code and checks if the
vote has not already been rejected. If the signature is valid,
then the rejection code is published to a rejection list for this
election at the Ballot Signer. Finally, the Ballot Signer
allows the user to vote once again.

3) Determine the Election Winner

Every user is able to count the votes and to calculate the
results of an election. To achieve this, in a first step all votes
(signed encrypted-ballots) for the selected election are
downloaded by the User Client from all known Voting
Servers and put on a single list. After that, all digital
signatures are checked and votes with invalid signatures are
removed from the list. Duplicate votes are also identified and
removed from the list.

In a second step, the rejection lists are downloaded by the
User Client from the Ballot Signer. All ballot-IDs on the
rejection lists are invalid and are removed from the list.

After the end of the election the Election Server
publishes its private key for the specific election. All
remaining votes are decrypted with this private key and
finally counted. Depending on the election model, the Voting
Server just counts the votes or e.g. weighs the counted votes
in a preferential voting system. Our system supports all
methods of determining an election winner we have
identified as important in Section III.A.

Users stay anonymous with respect to the Voting Servers
in this determination process as all votes have been placed on
the Voting Servers encrypted, and signed by the Ballot
Signer only.

V. EVALUATION

In the following, we evaluate our proxy voting system
based on the requirements defined in Section III.

A. Functional Requirements

The functional requirements of a proxy voting system are
all fulfilled by our proposed solution. All required functions
such as voting, delegation of votes, rejecting and revocation
of votes, and determination of the election winner can be
modeled by our system.

B. Security Requirements

In the following, the security requirements of a proxy
voting system are evaluated.

Anonymity: In general, all communication channels
between the user and the individual servers are encrypted
using SSL/TLS. This ensures that no untrusted third-party
might be able to inspect any communization and further
disclose a vote and the corresponding user’s identity.
Additionally, confidentiality of the vote is not only achieved
on communication level, but also for the individual entities
by encrypting the vote.

In general, all communication channels between the user
and the individual servers are encrypted using SSL/TLS.
This ensures that no untrusted third-party might be able to
inspect any communization and further disclose a vote and
the corresponding user’s identity. Additionally,
confidentiality of the vote is not only achieved on
communication level, but also for the individual entities by
encrypting the vote.

The vote of a user is encrypted and signed before it is
sent to the Ballot Signer. Hence, the Ballot Signer is not able
to read the content of the vote. The Ballot Signer
authenticates the user, hence it knows the user’s identity but
it does not store the encrypted vote. Not storing the
encrypted vote assures that the user cannot be linked to the
encrypted vote after an election ends.

After checking that the user has not voted yet, the Ballot
Signer removes the signature of the user and signs the vote,
before it is sent back to the user. Removal of the citizen’s
signature ensures anonymity with respect to the Voting
Server. When the user forwards the vote to a Voting Server,
the Voting Server cannot find out which user the encrypted
vote belongs to as the citizen’s signature has been previously
removed. Hence, the Voting Server cannot link the vote to a
specific person.

The Election Server is not directly involved in the voting
process (no votes are transferred to the Election Server
during the voting process), hence the vote stays always
hidden to the Election Server.

Secrecy: Secrecy is mainly established by the Election
Server and the user using public key cryptography. The
Ballot Signer and the Voting Servers cannot read the
encrypted vote, because until the election end the private
election key is kept secret by the Election Server. The
Election Server is the only server that is able to decrypt the
votes. Secrecy with respect to the Election Server is assured
as it is not directly involved in the voting process.

Integrity: In general, integrity of the system is ensured
by using multiple Voting Servers and applying digital
signatures on the exchanged messages. Votes are stored on

multiple Voting Servers, whereas all votes are signed by a
Ballot Signer. Hence, no Voting Server can generate or
modify any votes. Additionally, a Voting Server is not able to
invalidate or to reject a vote. Although a Voting Server is
able to delete a vote, votes are mirrored over multiple
servers. If a vote has been deleted by a Voting Server, users
can prove that the vote was deleted, because they have a
signed proof (the encrypted-ballot signed by the accepting
Voting Server) of having successfully submitted their vote.

 The Election Server is not involved in the
communication process containing the vote; hence it cannot
modify, delete, generate, or reject votes. To void the integrity
of the system, the Election Server could only change the
election key or remove the whole election, what can easily
be detected by everybody.

The Ballot Signer cannot invalidate votes without getting
the signed rejection from the user, because the Ballot Signer
does not store the rejection code. Hence, it also cannot reject
votes after the election deadline. The only drawback is that
the Ballot Signer could generate valid ballots. Utilizing
several Ballot Signers for each commune and limiting valid
votes to the number of eligible voters can minimize this risk.

Authenticity: Ensuring authenticity is the main task of
the Ballot Signer. In our system, the user authenticates
herself to the Ballot Signer using her national eID. The use
of the Austrian eID ensures unique identification and secure
authentication to the Ballot Signer.

The Voting Servers do not need to authenticate the user,
but the validity of the votes is verified by validating the
signature provided by the Ballot Signer. The Election Server
is not involved in the communication process containing the
vote.

Verifiability: Verifiability is ensured by using digital
signatures and separated Voting Servers storing the same
information. To verify the official result of the election,
everybody can download all votes from the Voting Servers.
After the election ends, the private key of the Election Server
can be downloaded and the encrypted votes can be
decrypted. Then the official result can be also verified by
counting the votes by the user themselves locally.

Additionally, each user can check if her own vote is still
in the system. Therefore, the user queries the Voting Server
with the ballot-ID to receive the signed encrypted-ballot. The
user compares the received ballot with a local stored copy. If
they are unequal, the ballot has vanished and the user can
blame the faulty servers, because she has a signed proof of
each server that the ballot was accepted.

VI. CONCLUSIONS

Liquid democracy and proxy voting represent an
interesting approach that bridges the gap between direct and
representative voting. Current software systems
implementing this approach simplify the whole process and
help in a wide range of decision-making processes, such as
in e-Government or e-Business. However, due to the lack of
security related features, those systems cannot fulfill the

requirements of electronic voting systems. Therefore, we
have implemented a proxy voting system supporting liquid
democracy, which improves current systems in terms of
security and privacy.

To reduce the risk of an attack, our system does not store
any information on a server that makes reconstruction of
votes possible. Separated servers, asymmetric key
encryption, and qualified digital signatures are used to make
this possible. Unique identification and strong authentication
are implemented by using the Austrian citizen card and the
associated eID-systems. This prevents users of being able to
vote twice. However, due to our distributed architecture and
cryptographic functions, we still guarantee anonymity and
secrecy when users are casting their votes.

As future work we consider the following aspects as most
important: The integration of other European eID systems
would be an interesting improvement to facilitate the
deployment within the European context. Also, the current
version relies on a Desktop-based client application that must
be installed by the user. Browser-based clients would
significantly improve the usability of the system. However,
various security-related problems in relation to a browser-
based variant need to be addressed before such an approach
can be implemented.

REFERENCES
[1] Piratenpartei: Liquid Democracy.

http://wiki.piratenpartei.de/Liquid_Democracy

[2] Jabbusch, S.: Liquid Democracy in der Piratenpartei, Master Thesis

[3] Lewitzki, M.: Das Internet in Parteiform: Wie segelt die
Piratenpartei?, 2010,
http://www.regierungsforschung.de/dx/public/article.html?id=96M

[4] Golem.de: Piratenbraut mit Doppelleben,
http://www.golem.de/news/liquid-feedback-piratenbraut-mit-
doppelleben-1303-97952.html

[5] Bieber, C., Lewitzki, M.: Das Kommunikationsmanagement der
Piraten. In: Die Piratenpartei. pp 101-124, 2013

[6] Piratenpartei: Liquid Democracy/Votorola.
http://wiki.piratenpartei.de/Liquid_Democracy/Votorola, 2012

[7] Zelea.com: User:ThomasvonderElbe GmxDe/Vote mirroring.
http://zelea.com/w/User:ThomasvonderElbe_GmxDe/Vote_mirroring
#Adhocracy_to_Votorola, 2012

[8] Liquid Democracy e.V.: Über Adhocracy.de - Adhocracy.
https://piratenparteinrw.adhocracy.de/_pages/about/uber-adhocracy,
2012

[9] Liquid Feedback: Liquid Feedback – Interactive Democracy.
http://liquidfeedback.org/, 2012

[10] Gritzalis, D.: Principles and requirements for a secure e-voting
system. In: Computers & Security. Vol 21, No 6, pp 539-556, 2002

[11] Rubin, A.: Security Considerations for Remote Electronic Voting
over the Internet. In: Communications Policy and Information
Technology: Promises, Problems, Prospects, 2002

[12] Reynolds, A., Reilly, B., Ellis, A.: Electoral System Design: The New
International IDEA Handbook.
http://www.idea.int/publications/esd/loader.cfm?csmodule=security/g
etfile&pageid=10445

[13] Leitold, H., Hollosi, A., Posch, R.: Security Architecture of the
Austrian Citizen Card Concept. In: ACSAC 2002. pp. 391-402, 2002

