
Secure Hardware-Based Public Cloud Storage

Bernd Zwattendorfer1, Bojan Suzic2, Peter Teufl2, Andreas Derler3

 1E-Government Innovationszentrum (EGIZ)
bernd.zwattendorfer@egiz.gv.at

2A-SIT – Secure Information Technology Center – Austria
{bojan.suzic, peter.teufl}@a-sit.at

3Graz University of Technology
andreas.derler@student.tugraz.at

Abstract: The storage of data on remote systems such as the public cloud opens
new challenges in the field of data protection and security of the stored files. One
possible solution for meeting these challenges is the encryption of the data at the
local device, e.g. desktop, tablet, or smartphone, prior to the data transfer to the
remote cloud-based storage. However, this approach bears additional challenges
itself, such as secure encryption key management or secure and effective sharing
of data in user groups. Including an additional encryption layer and security checks
may additionally affect the system’s usability, as higher security requirements and
a group sharing workflow increase general overhead through the complete
organization of processes. To overcome such issues, we propose a solution which
is based on highly secure and attack-resistant hardware-based encryption applied
through the use of the Austrian citizen card public key infrastructure. As the citizen
card infrastructure is already deployed and available to a wide population, the
service overhead and additional requirements of our proposed solution are lower in
comparison to other approaches, while at the same time synergistic and networking
effects of the deployed infrastructure facilitate its usage and further potentials.

1 Introduction
The quantity of digital information increases steadily as businesses improve processing
and managing of information by digitizing and structuring them. Additionally, the
amount of data stored by private users is boosted by high quality multimedia files and
constantly declining storage prices. The way of accessing data ought to be independent
of location and device, especially with the rising popularity and broader usage of mobile
devices such as smartphones and tablets. These factors contributed to increased demand
for storage capabilities e.g. for archiving or backup purposes. From that point, many
subjects identified public cloud storage services as adequate or optimal means to lower
costs and increase service flexibility and potential by outsourcing data storage and

bzwattendorfer
Typewritten Text
Bernd Zwattendorfer, Bojan Suzic, Peter Teufl, Andreas Derler - "Secure Hardware-Based Public Cloud Storage"
 - Open Identity Summit, 2013, pp. 43-54
The original publication is available at www.springerlink.com

providing file synchronization across multiple clients. Popular examples of such public
cloud storage services are e.g. DropBox1 or Google Drive2.

While insensitive information and data can simply be stored on such public cloud
providers, security and confidentiality plays an inevitable role if sensitive data needs to
be stored in the cloud. Most cloud providers cannot easily fulfill such requirements, as
the providers usually are able to inspect the stored data. Even if the cloud provider
encrypts the data and stores it in encrypted format, the provider is always in possession
of the decryption key.

To still be able to store sensitive data securely and confidentially in the cloud, some
cloud providers offer solutions where data is encrypted on client-side prior to its transfer
to the cloud. We introduce such solutions briefly in Section 2. However, most of those
solutions have the drawback that the encryption and decryption process relies on
software-based keys, which are stored on the respective client device and under some
conditions could be accessible by unauthorized parties. To bypass security issues raised
with that approach, we propose a solution which uses a hardware-based key pair kept on
a smart card to protect data stored in the cloud. Our solution therefore relies on the
Austrian citizen card, which represents the official eID in Austria [HKR+08]. The usage
of the Austrian citizen card has the advantage that it is based on a solid and independent
Public-Key-Infrastructure (PKI). Hence, data can be practically encrypted for each
Austrian citizen and securely stored and shared in the cloud. In this paper, we present the
implementation of this approach and compare it with existing solutions.

2 Related Work
As importance of security and privacy concerning cloud storage services increased,
several designs enhancing these properties have been proposed. In this section, we firstly
introduce two different designs for cloud storage, namely “cloud storage services” and
“encryption middleware”. Secondly, we describe related work in the area of encryption
middleware designs, as our proposed solution also fits into this design approach. Finally,
the related work will also serve as a basis for our evaluation in Section 5.

Cloud storage services usually consist of a user-friendly client application and server-
side software to store data. Some of these services also provide a web interface and a
service API. The aim of cloud storage services is to provide cost-effective solutions for
users to store and backup their data remotely, which should be easily accessed by
different clients. Variable amount of storage can be bought as packages, while limited
space is available for free. All information is redundantly stored in different places in
order to increase availability of files. The client application creates a specific folder in
the user's home directory. File actions within this directory trigger automatically the
syncing to the cloud storage. Furthermore, if available, files can be accessed and
managed through a web interface. Typical features of cloud storage services are backup,

1 https://www.dropbox.com
2 https://drive.google.com

synchronization, and sharing. Typical implementations of cloud storage services are
DropBox, Google Drive, Microsoft SkyDrive3, Wuala4, or SugarSync5.

Encryption middleware describes an encryption interface between client and cloud
storage provider, with the purpose to ensure security and confidentiality, independent of
the cloud storage provider. As many users doubt the security features of cloud storage
providers, encryption middleware tries to resolve this issue. It provides an additional
security layer in the form of client-side file encryption, which is performed before files
are uploaded to the cloud storage service. This process involves management of required
encryption keys, which are required for the en/decryption process.

In the next sub-sections we briefly describe the encryption middleware implementations
Boxcryptor6, CloudFogger7, and Viivo8. An evaluation of these solutions as well as of
our proposed approach is given in Section 5.

2.1 Boxcryptor

Boxcryptor is available for multiple platforms, e.g. Windows, Mac OS X, iOS, and
Android. Boxcryptor provides support for the cloud storage services Dropbox,
SugarSync, Microsoft SkyDrive, and Google Drive. A basic version of BoxCryptor is
offered for free. Additionally to this free version, Boxcryptor can be purchased in an
unlimited version, which enables filename encryption. Storage is managed in volumes,
where each volume is mapped to a specific cloud storage service. Copying files into a
volume invokes encryption and the encrypted file is copied into a corresponding
subfolder of the cloud storage service directory. For example, copying files into a
volume mapped to DropBox will store the encrypted files into a Boxcryptor specific
subfolder of the DropBox folder.

2.2 CloudFogger

CloudFogger is freely available for Windows, Mac OS X, Android, and iOS platforms.
Supported cloud storage services are DropBox, SkyDrive and Google Drive. Users need
to specify which cloud storage services they wish to protect, with the option of disabling
protection for subfolders. Protected cloud storage service directories can be accessed and
manipulated as usual. However, before uploading files to the cloud storage, CloudFogger
encrypts each file and uploads the encrypted file instead.

2.3 Viivo

Viivo is a free product and available for iOS, Android, Mac OS X, and Windows
platforms. As of April 2013, DropBox is the only supported cloud storage service. When
copying files into the Viivo folder within the user’s home directory, it causes the
encrypted versions of those files to be stored into a specific subfolder of the DropBox

3 https://www.sugarsync.com
4 http://www.wuala.com
5 https://www.sugarsync.com
6 https://www.boxcryptor.com
7 http://www.cloudfogger.com
8 http://www.viivo.com

directory, which are subsequently uploaded to Dropbox servers. The opposite way
around, encrypted files added to the DropBox subfolder are decrypted automatically and
consequently stored in the Viivo home folder.

3 Citizen Card Encrypted (CCE)
The following two sub-sections explain the concept of the Austrian citizen card and the
Citizen Card Encrypted (CCE) software, which takes use of the Austrian citizen card
functionality for encrypting and decrypting data.

3.1 The Austrian Citizen Card Concept

The Austrian citizen card [HKR+08], the official eID in Austria, constitutes a core
element within the Austrian e-Government concept. The main aim is to facilitate
electronic communication processes between citizens and public authorities. Moreover,
by the help of the Austrian citizen card such electronic communication processes can be
accelerated and secured at the same time.

In general, the term “citizen card” is more seen as a concept rather than a card. The
Austrian e-Government Act [EGovG], which defines the Austrian citizen card in legal
terms, emphasizes especially its technology neutrality and its independence of technical
components. Due to declared technology neutrality, different implementations are
possible and do already exist for the citizen card. Currently, the most dominant citizen
card implementation in Austria is a smart card. For instance, each Austrian citizen gets
issued a health insurance card (e-card), which can easily be activated to use citizen card
functionality. Nevertheless, another emerging citizen card technology is based on mobile
phones. In this implementation, a server-side hardware security module stores the
citizens’ secret keys, which can be activated by the use of the citizen’s mobile phone.

In general, the most important functionalities of the Austrian citizen card, as regulated in
the Austrian e-Government Act, are (1) citizen identification and authentication,
(2) generation of qualified electronic signatures and (3) data encryption and decryption.
By using the Austrian citizen card, citizens can be uniquely identified and securely
authenticated at governmental or private sector online applications. Additionally, the
Austrian citizen card contains a qualified signature certificate according to the EU
Signature Directive [EP95]. Hence, electronic signatures created with an Austrian citizen
card are legally equivalent to handwritten signatures. Besides this signature certificate,
an additional key pair is stored on the card, which can be used for the secure encryption
and decryption of data. Thereby, the public encryption keys of every Austrian citizen are
available through a central LDAP directory. Hence, data can be encrypted for each
Austrian citizen and stored confidentially. In the remainder of this paper, we focus on the
encryption and decryption functionality of the Austrian citizen card only.

3.2 The CCE Software

The CCE (Citizen Card Encrypted Software) is a platform-independent and open source
software developed by A-SIT (Secure Information Technology Center – Austria). The

software is available through the JoinUp platform, a service initiated and supported by
European Commission9. CCE especially supports the public authorities demanding high
data security and easy and flexible data management. Basically, CCE allows for the
encryption and decryption of arbitrary data and the management of files or directories
both for single and multiple users.

For file and directory encryption and decryption CCE relies on hardware-based keys,
which are stored on the Austrian citizen card. However, also software-based keys can be
used within CCE. Particularly the use of the Austrian citizen card enables a highly
secure and confidential data exchange since the required keys are stored in hardware and
thus cannot be read out by an application. CCE currently supports the smart card-based
implementation of the Austrian citizen card only, as no encryption and decryption
functionality is provided by the mobile phone signature at the moment. However, other
smart card implementations can be easily integrated by implementing an application
interface for a particular implementation.

CCE relies on the well-known and established S/MIME [RT04] standard as container
format for storing data. S/MIME is also widely integrated in several e-mail clients for
encrypting e-mails. In the following, we briefly explain main features of the CCE
software.

• Smart card as secure decryption unit
The CCE software supports the use of smart cards to decrypt the keys used in
S/MIME containers. The process of decryption is directly carried out on the
smart card, initiated by the user entering a personal PIN.

• Support of group encryption
Files and directories can be encrypted for multiple users, which can be
organised in a group-like hierarchy. The management of groups is handled
manually by the users on their own. However, the support of multiple users also
allows for the inclusion of appropriate backup keys.

• Support of the Austrian PKI infrastructure
Asymmetric public key encryption facilitates encryption procedures of users
and groups. The public keys of recipients are hence publicly available through
the Austrian PKI infrastructure by querying the central LDAP directory.
Nevertheless, CCE also enables the integration of arbitrary PKI infrastructures
(e.g. from an enterprise context), which can be done by extending its open-
source application interface to support the new infrastructure.

4 Architecture and Implementation
In this section we explain the architecture and implementation of our smart card-based
approach for storing data securely and confidentially in the public cloud.

9 http://joinup.ec.europa.eu/software/cce/description

http://joinup.ec.europa.eu/software/cce/description

4.1 Architecture

For our solution the CCE software has been extended in order to be able to store data
also at public cloud providers and not only on the local storage. Citizens can thereby
select between different cloud storage services where data should be stored. The current
implementation supports the providers DropBox and Google Drive.

Fig. 1 illustrates our architecture for secure encryption and decryption of data by using
the Austrian citizen card functionality and storing the encrypted data in the public cloud.
In this architecture, in fact three different entities are involved: (1) the citizen who wants
to store some file or directory securely in the public cloud, (2) the Austrian citizens the
files or directory should be encrypted for and, (3) the public cloud provider where the
encrypted files will be stored.

Figure 1: Architecture for securely storing data in the public cloud using the Austrian citizen card

Fig. 1 also illustrates the encryption process using CCE and subsequently the process of
storing the encrypted data in the public cloud. In a first step (Step 1), the citizen selects
the files and directories she wants to store securely and confidentially in the cloud. In the
next step (Step 2), the citizen selects one or more other persons (Austrian citizens) the
chosen files or directories should be encrypted for. If citizens’ encryption certificates are
not known by CCE yet, they can be queried from the central LDAP directory10. In this
directory, all public certificates of every Austrian citizen registered in the system are
stored. Before starting the encryption process, the validity of the encryption certificates
of the selected persons is checked. Finally, in Step 3 the data are encrypted for the
intended citizens and transferred to the selected public cloud provider. Authentication
credentials for accessing the public cloud provider need to be provided during the

10 The querying of the external LDAP service is not necessary if the users have exchanged the certificates, e.g.
using email or by using organizational certificate store. It is also possible to include own LDAP server.

configuration and setup of CCE. During the data transfer, the credentials are retrieved
from the CCE configuration and provided to the public cloud provider automatically.

The decryption process is similar to the encryption process; hence the decryption process
will not be illustrated. In the decryption process, the encrypted data are downloaded
from the public cloud into the local file system by the user. Afterwards, the data are
decrypted by using CCE and invoking the citizen’s citizen card. Now, the citizen is able
to inspect the plain data.

4.2 Implementation

For supporting public cloud storage as an option, CCE had to be amended and extended
accordingly. In particular, emphasis was put on flexible adding of additional public
cloud providers besides DropBox and Google Drive. For adding an additional cloud
provider, the server communication with the cloud provider and its configuration
management needs to be implemented. Hence, the modular internal architecture of CCE
allows for an easy implementation of new providers.

The creation of a new public cloud provider configuration requires a smart card because
the smart card is linked to credential information necessary to access cloud provider
services. The credential information for the cloud provider is thereby encrypted by the
affiliated smart card, stored in the local file system, and assigned to the corresponding
person. Hence, an automatic mapping between smart card and cloud provider
authentication credentials is achieved. The advantage of this approach lies in the fact that
cloud specific authentication data need to be entered once during configuration; it is then
accessed automatically during each subsequent cloud data transfer.

In details, configuration of authentication credentials for cloud provider access is as
follows. Authentication at the cloud provider is based on the authorization protocol
OAuth11 for both cloud providers DropBox and Google Drive. Required authentication
tokens of OAuth are ascertained during the configuration of a new cloud provider in
CCE. This requires the input of the authentication credentials from the user, which in
turn adds CCE as trusted cloud application and gives CCE access to the user’s cloud
account. Subsequently, CCE receives an access token from the cloud provider for the
secure access to the cloud storage. According to the OAuth protocol, this access token
can be continuously used for cloud provider authentication, so that additional provision
of user authentication credentials is not required anymore.

To store data confidentially, users are able to select their desired storage location. The
default location is the local file system, whereas users are now able to also store
encrypted data at different cloud providers, which are linked with their citizen card.
During data upload, saved cloud provider credentials are decrypted by using the user’s
smart card and are used for cloud provider authentication.

Besides extending the pure CCE application, integration into the operating system’s file
system has been implemented too. In this case, users are able to copy files into a specific

11 http://oauth.net

folder of the personal HOME directory and files are then automatically encrypted and
transferred to the cloud. When moving files into this specific folder, the CCE wizard
starts automatically. Recognition of moved or newly created files in this specific folder
is implemented using WatchServices12, which observes file system operations. Using the
CCE wizard, not only files can be automatically encrypted but also desired recipients can
be selected. For distribution of encrypted files the existing mechanisms of the respective
cloud provider can be used.

5 Evaluation
In this section we evaluate encryption related features and functionalities of middleware
implementations for cloud storage in terms of encryption and data sharing.

5.1 Boxcryptor

Boxcryptor encrypts files using the AES-256 encryption algorithm. The encryption
scheme is volume specific, where all files inside one volume are encrypted with its
particular key. This volume-specific key is generated randomly, encrypted with the
master key derived from the user's password, and placed in the volume's root. Therefore,
in this approach encryption keys are derived from the user's password, which may be
leaked through phishing attacks, caught by Trojans, or accidentally published to vicious
third parties. Another disadvantage of Boxcryptor's approach is the fact that filename
encryption is performed only in the unlimited and retail version of the software. The
standard and free version of the software does not obfuscate filenames, which poses
additional security risk and information channels for attackers.

Sharing in Boxcryptor is possible only for entire volumes mapped to a specific provider.
In order to gain volume access, it is required for the user to share the password, which is
not considered as a highly secure practice.

5.2 CloudFogger

During a new account creation on the CloudFogger service, a user specific RSA key pair
is generated locally on the user's device. The private key is then encrypted with a user
provided password, using AES-256 and uploaded together with the public key to
CloudFogger servers. In this approach, the encrypted private key information is always
downloaded and decrypted with the user's password locally on the user’s device,
allowing access to protected files. This way, CloudFogger is never able to gain
knowledge of private key or password information, making it possible for the user to
consume the service on different devices. Each file is individually encrypted using AES-
256 whereby AES-keys are encrypted with the user's public key and embedded in the
file. Due to file encryption based on user passwords, phishing and Trojan attacks, as well
as password leaking, are viable threats to the security of this approach.

As AES-keys are embedded directly in each of the encrypted files, they can easily be
shared with other subjects. For such purpose, embedded AES-keys files are encrypted

12 http://docs.oracle.com/javase/7/docs/api/java/nio/file/WatchService.html

with the public keys of invitees13. This allows the invitee to locally decrypt shared files
with her private key. Sharing can be handled independent of the underlying cloud
storage services. However, all participants are required to be registered to CloudFogger.

5.3 Viivo

Similarly as for CloudFogger, RSA key pairs of the users are created locally during the
process of account registration. Both public and encrypted private keys are stored on
Viivo servers. The encrypted private key is downloaded on the user's client device and
decrypted by providing the corresponding password. Moreover, each file in the system is
encrypted using the AES-256 encryption algorithm, whereby AES-keys are encrypted
with the private key associated with the user. As the encryption approach of Viivo is
basically similar to the one of CloudFogger, they both share similar disadvantages from
the security perspective. Having the encryption keys derived from user passwords,
attacks ranging from phishing and Trojan attacks to information leakage are possible for
both of the approaches. As all the keys and files depend on one master user password, its
leakage may render the whole service and system unusable.

The sharing of files with others is performed by inviting the respective user, which has
to manually allow sharing of particular files. Creating a share invokes generation of new
AES-keys for all files in the share. These keys are in then encrypted with the public key
of every invitee. Then, the encrypted keys are sent by the inviting user to each invitee.

From the user's perspective, sharing of a file stored on DropBox is done in two activities.
Firstly, the file has to be shared through the DropBox sharing mechanism. Secondly, the
sharing of specific files has to be allowed by the invitee through the Viivo interface. In
contrary, when access to shared files is revoked, the shared files are not re-encrypted.
Instead, new keys are created. New keys ensure that newly created files are no longer
accessible by the previously invited user.

5.4 CCE

CCE uses a slightly different approach for file encryption than other evaluated
solutions. Instead to create RSA key pairs for new users each time they register, and
store them on (potentially insecure) local storage prior to the encryption, CCE relies on
the existing Austrian citizen card PKI infrastructure. This way, it uses independent,
third-party smart card and secure hardware based encryption.

The containers in CCE, which can hold files and directories, are encrypted with AES
symmetric keys. These keys are further encrypted using the public RSA key of the
Austrian citizen card, taking the public RSA key of each user being allowed to access the
container. The containers itself are stored in S/MIME format, which is compatible with a
broad range of other applications, including popular e-mail clients. For the decryption of
encrypted files, the Austrian citizen card in the form of smart cards is used. This
presumes that encryption keys are encrypted with the user's public key and are decrypted
in the smart card, using the securely stored private key.

13Invitees – persons having access rights on the file

The advantage of this approach is that the private keys are never loaded into the
computer system, nor can they be directly accessed or read. Instead, they are contained
in the smart card and operations involving them are executed on smart card hardware
only when necessary conditions are met (e.g. PIN-based authentication). However, CCE
is not limited on the use of Austrian citizen cards only. It can support other PKI
infrastructures or smart card implementations, or can rely on software-based keys too.

The sharing of files in CCE is performed in two steps. First, the user selects intended
recipients during the encryption process. CCE encrypts files for these users by
encrypting and storing the symmetric key in the container for each particular user, using
her public key. The public key of the user can be stored locally or retrieved from the
public LDAP directory of the Austrian citizen card PKI. Furthermore, it is possible to
encrypt files for not previously known or contacted users, where prior key exchange or
establishing of contact is not necessary. In the second step, the user enables access to the
underlying cloud storage for intended users and performs upload of the encrypted
containers or synchronization with the local directory with the containers.

The credentials to access remote cloud services in CCE are stored in secure manner.
They are encrypted and stored in a local XML file. In order to enable access to remote
cloud services, the user has to insert her smart card used during credentials initialization.
This approach prevents the leakage of the cloud credentials to unauthorized third parties.

5.5 Summary

In the previously presented evaluations and based on summarized comparison in Table
1, we demonstrate the advantage of our CCE-based solution. From the security
perspective, our solution relies on hardware-based encryption, where the private key
used for decryption never leaves the smart card. This case does not require the usage of a
master password and consequent key derivation as it is the case for BoxCryptor,
CloudFogger, and Viivo. The CCE approach is prone to phishing and keylogger
attacks14, which may render the complete system unusable in the case the master
password is compromised. From the broader sharing and usability view, our solution's
advantage lies in the fact that it relies on a third-party public PKI infrastructure.

The Austrian citizen card is available to all persons living in Austria as a part of several
implementations, including bank cards or social health insurance cards, which are
basically most widely deployed. As the software is open-source, the support for other
PKI infrastructures can be easily implemented by extending the application interface.

Thus, the existing, already present and widely deployed infrastructure is used without
incurring additional costs or overhead. That enables the exploration of networking
effects, as there are already many users having their public certificate enabled and
reachable through the public LDAP endpoint. Users can simply encrypt and exchange
encrypted files between each other without the necessity to maintain prior contacts and
engage in secure key exchange.

14 If PIN-Pad smart card readers are used.

Feature \ Middleware BoxCryptor CloudFogger Viivo CCE

Encryption

AES support √ √ √ √

RSA support - √ √ √

Volume-based encryption √ - - -

File-based encryption - √ √ √15

Container-based encryption - - - √

File names securely stored - √ √ √

Software keys supported √ √ √ √

Hardware keys supported - - - √

User master password
derivation based encryption √ √ √ -

Encryption keys stored locally - - - √

Encryption keys stored
remotely √ √ √ -

Phishing attack prone √ √ √ -

Keylogger attack prone √ √ √ -

Sharing

Prior key exchange necessary √ √ √ -

Public LDAP Key discovery - - - √

Encryption for unknown users - - - √16

Volume based sharing √ - - -

File/directory based sharing - √ √ √

Feature \ Middleware BoxCryptor CloudFogger Viivo CCE

Relies on third-party PKI - - - √17
Multiplatform support √ √ √ √18

Table 1: Comparison of middleware encryption and sharing features

15 Possible by encrypting one file per container
16 Using public LDAP endpoint for searching/browsing recipients
17 Using the Austrian citizen card public key infrastructure. Can be extended with a private PKI.
18The mobile versions of the software are not publicly available, however, they are currently in the
development phase (iOS and Android platforms)

6 Conclusion and Further Work
The storage of data in the public cloud is becoming popular and a widely used scenario.
As the cloud market is intensively growing and providing many new and innovative
service and integration solutions, it can be expected that the necessity to store personal
or business data in the public cloud will grow even further in nearly future. However,
storing data in remote public cloud systems brings new challenges and security risks.

In our work, we focused on data confidentiality and general security aspects of cloud
storage in the multi-group and multi-provider scenario. For such purpose we extended
the file encryption tool CCE, which acts as an encryption middleware on the local user
computer. This extension includes the support for data encryption and sharing via public
cloud services. Furthermore, we analyzed publicly available middleware encryption
solutions, compared their features, and provided an overview of the features of these
tools. Based on this evaluation, we demonstrated that our solution provides significant
advantages in terms of data security and resistance to several popular attack techniques.
As the proposed solution is based on already deployed and widely used infrastructure, it
requires minimal costs or overhead in order to be applied.

There are several directions which could be taken for further development of our work.
Currently, there are two versions of the software for iOS and Android in development.
We plan to integrate them with the desktop solution presented in this work. Another
possible task for the future is the integration of the tool into the web browser, which may
provide additional quality in user experience and broader platform support. In addition,
we evaluate possibilities to provide cloud storage redundancy at the middleware level,
meaning to store data distributed on different cloud services. Finally, we try to integrate
our solution in the user's operating system, so that the data can be visible, accessed, and
manipulated directly at the operating system level.

References

[ABC01] Abraham, N.; Bibel, U.; Corleone, P.: Formatting Contributions for LNI. In (Glück, H.I.
Hrsg.): Proc. 7th Int. Conf. on Formatting of Workshop-Proceedings, New York 1999.
Noah & Sons, San Francisco, 2001; S. 46-53.

[Ez99] Ezgarani, O.: The Magic Format – Your Way to Pretty Books, Noah & Sons, 2000.

[EGovG] Federal Act on Provisions Facilitating Electronic Communications with Public Bodies

(The Austrian E-Government Act - E-GovG) StF: BGBl. I Nr. 10/2004
[EP95] Data Protection Directive 95/46/EG, EU Parlament, Official Gazette Nr. L 281 from

23/11/1995 P. 0031 – 0050
[HKR+08]A. Hollosi, G. Karlinger, T. Rössler, M. Centner: Die österreichische Bürgerkarte,

Version 1.2, 2008,
http://www.buergerkarte.at/konzept/securitylayer/spezifikation/aktuell/

[RT04] B. Ramsdell, S. Turner (2004): Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.1 Message Specification”, RFC 3851, 2004,
http://www.ietf.org/rfc/rfc3851.txt

http://www.buergerkarte.at/konzept/securitylayer/spezifikation/aktuell/
http://www.ietf.org/rfc/rfc3851.txt

	1 Introduction
	2 Related Work
	2.1 Boxcryptor
	2.2 CloudFogger
	2.3 Viivo

	3 Citizen Card Encrypted (CCE)
	3.1 The Austrian Citizen Card Concept
	3.2 The CCE Software

	4 Architecture and Implementation
	4.1 Architecture
	4.2 Implementation

	5 Evaluation
	5.1 Boxcryptor
	5.2 CloudFogger
	5.3 Viivo
	5.4 CCE
	5.5 Summary

	6 Conclusion and Further Work
	References

