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Abstract—Many systems rely on passwords for authentication.
Due to numerous accounts for different services, users have
to choose and remember a significant number of passwords.
Password-Manager applications address this issue by storing the
user’s passwords. They are especially useful on mobile devices,
because of the ubiquitous access to the account passwords.

Password-Managers often use key derivation functions to
convert a master password into a cryptographic key suitable for
encrypting the list of passwords, thus protecting the passwords
against unauthorized, off-line access. Therefore, design and imple-
mentation flaws in the key derivation function impact password
security significantly. Design and implementation problems in
the key derivation function can render the encryption on the
password list useless, by for example allowing efficient brute-
force attacks, or — even worse — direct decryption of the stored
passwords.

In this paper, we analyze the key derivation functions of
popular Android Password-Managers with often startling results.
With this analysis, we want to raise the awareness of developers of
security critical apps for security, and provide an overview about
the current state of implementation security of security-critical
applications.

I. INTRODUCTION

Researchers have recently shown, that the average user has
around 25 online accounts [1l] consisting of credentials for
e-mail, online-shopping, social networks, finance, banking or
any other online system that needs to verify the identity of a
customer. With password-based authentication being the most
commonly used system, attacks such as phishing, dictionary-
attacks, or brute-forcing, have become a lucrative business
[2]03][4]]. Attackers are further encouraged by a bad habit:
Many users share passwords over multiple accounts [1]. As
a consequence, once a password gets stolen, every associated
account is compromised. Furthermore, users often choose
passwords with a low entropy allowing for efficient brute-
force or dictionary attacks. Different password policies try
to address this issue by defining minimum password require-
ments. Examples are policies, such as “minimum-password-
length®, “different password for each account”, “usage of
special characters® and similar [5].

Unfortunately, increasing the password complexity, does
not necessarily increase the security and most certainly de-
creases the usability: Users tend to forget long and hard to
guess passwords [6][7], or even worse, store them unencrypted
on their smartphone [8]]. Furthermore, those users, who do use

a strong password, might think themselves safe and thus use
it on multiple sites.

So called Password-Managers [9][10] try to address this
issue. Password-Managers offer the ability to securely save
user credentials in an encrypted form. Many Password-
Managers use a single master password, in order to protect
their credentials [[11]. Obviously, the security of the chosen
master password significantly impacts the security of the
stored credentials. The actual security also dependents on the
key derivation function used to convert the master password
into a key suitable for encryption. A key derivation function
typically uses a pseudo-random function such as an HMAC
to derive a key from a password. Furthermore, a good key
derivation function tries to amend for low entropy in the
master password, while at the same time making the key
derivation a cryptographically secure and protracted process.
Key derivation functions use a random value, a so-called salt,
to increase the entropy of the master password and thus prevent
efficient dictionary attacks, where one dictionary can be used
for all instances of the key derivation function. Furthermore,
by making the key derivation a protracted process, trying all
possible combinations of passwords (brute-forcing) requires an
inordinate amount of time, and with newer key derivation func-
tions also memory. However, for usability reasons, optimum
key derivation times are a compromise between security and
usability. A user would hardly be willing to wait a significant
amount of time and close all other applications just to get
access to her credential store. The actual amount of time
depends on how fast the key derivation function evaluates on
the target device. Therefore, security and usability depend on
the specific use case and a general guideline cannot be given.

Due to the offered convenience, Password-Managers have
gained a lot of popularity over the last couple of years [12]]. The
success of smartphones and tablets made Password-Managers
ubiquitous. This in turn entailed serious consequences: Smart-
phones can be stolen or lost fairly easy [13]. A correct
implementation of a mobile Password-Manager is therefore all
the more important as the encrypted database might fall into
wrong hands quite unexpectedly. Furthermore, with today’s
prevalence of cheap online storage, a Password-Managers
password list can be stored in the cloud for backup and
availability reasons. Users are often unaware how much trust
they put into such a service, when they store their password
list there.

Apart from the aforementioned Password-Manager appli-



cations, key derivation functions play a crucial role in all
applications that cannot rely on platform encryption featureﬂ
Examples are container applications that are used within Bring-
Your-Own-Device (BYOD) environments and security-relevant
consumer applications, such as mobile banking applications.

Due to the importance of secure implementations for these
security critical components, knowing the current state of the
implementations is crucial for the accurate estimation of the
risk factors involved in security relevant deployment scenarios.
Since, Password-Managers are widely spread and are very
important for the protection of sensitive data, they were chosen
as target for our security analysis.

In this paper, we manually examine the key derivation
functions of various Password-Managers for the Android plat-
form. Many of the analyzed applications suffer from significant
design and/or implementation errors. Apart from the conducted
security analysis, we also implement brute-force tools for
estimating the brute-force costs, of password classes with
different entropy, for each analyzed application. Finally, we
summarize common implementation mistakes and thereby aim
to raise the awareness of the respective application developers.
We adhere to the responsible disclosure guideline and have
informed the developers of the analyzed software about our
results and refrain from disclosing the names of the analyzed
applications here.

II. BACKGROUND & RELATED WORK

In this section we provide information about related work,
as well as an introduction to password-based key derivation
functions, such as PBKDF (defined in “PKCS #5: Password-
Based Cryptography Specification* [14]), Berypt and Scrypt.

A. Related Work

Recently Zhao and Yue examined the built-in Browser
Password-Managers of the most common Web browsers and
showed that all of them suffered from serious vulnerabilities
[15]. Additionally they proposed a cloud based Password-
Manager design to securely store credentials.

In 2005 Halderman, Waters and Felten came up with a
client-side Password-Manager design, to generate and store
arbitrary long and secure passwords [[I1]. The credentials are
secured through a single, easy to remember master password.
To prevent brute-force attacks, the key derivation function uses
a strengthened cryptographic hash function, respectively apply-
ing a hash function multiple times to increase the computation
time.

Indeed, in the last couple of years, several studies have
pointed out, that more than one long and complex password is
difficult to remember. As a result users tend to write down or
store their passwords somewhere else [L][6][7][ON[16]. Apart
from well-known brute-force or dictionary attacks on pass-
codes [3[][4]], other attacks, such as phishing, which directly
target the user, have also become widely spread.

IPlatform encryption can easily be enforced for managed devices. Due to the
tight operating system integration and additional hardware-support, platform
encryption systems typically offer a high level of protection. Unfortunately, in
non-managed environments their availability and correct configuration cannot
be guaranteed.

As a consequence, researchers have developed several
alternatives like graphical passwords or hardware tokens, to
replace password-based authentication. They showed, that
their methods can be resistant to brute-force or similar attacks
[L7][L8][L9][20][21].

B. Password-Based Key Derivation Functions

Most of the time, passwords cannot be used directly as
a key. This is due to the fact, that common cryptographic
algorithms need much longer key sizes. As a result, pseudo-
random functions are used to extend passwords to the appro-
priate length.

The key-space for password-based key derivation functions
directly depends on the allowed characters (n) and the length
(k) of the used password, resulting in n* possible keys.
Short passwords, using only characters [a-z] would therefore
decrease the key-space dramatically which in return would
allow quite efficient brute-force attacks.

1) PBKDF: The Public-Key-Cryptography-Standard #5
[14] defines PBKDF2E] as well as its predecessor PBKDF1
to circumvent the issues of the limited key-space. While
PBKDF1 was only capable of generating key sizes up to
160bit, PBKDF2 allows an arbitrary key length. According
to [14] it is defined as follows:

DK = PBKDF2(P, S, ¢, dkLen), (1)

where DK denotes the derived key, P the password, S the
salt, ¢ the iteration-count, and dkLen the desired key length.
PBKDEF?2 allows the specification of a pseudo random function,
such as HMAC [22]. HMAC is an algorithm for message
authentication using hash functions and a pre-shared key. To
deal with a small key space c has to be chosen accordingly. For
example, the NIST recommendation for Password-Based Key
Deriviation [23] requires a minimum of 1000 iterations, but
also states that “the number of iterations should be set as high
as can be tolerated for the environment”. If selected adequately,
this increases the computation time for a brute-force attack
dramatically. To prevent dictionary attacks, a random salt can
be chosen.
On the Android Platform, a key derivation function based on
PKCS#5 is provided through PBEKeySpeﬂ

Brute-force attacks on the PBKFD2 function can be sped-
up with dedicated hardware. Hence, different design proposals
for key derivation functions have been made, including scrypt
(Section: [[I-B2)) which is based on memory-hard algorithms.

2) Scrypt: In 2010 Percival proposed scrypt [24]][25]], a key
derivation function based on memory-hard algorithms, to deal
with the vulnerability of PBKDF2 to brute force attacks on
special hardware. While previous assumptions are based on
the premise that attackers are limited to the same hardware as
users, Percival points out, that by parallelism the cost of a brute
force attack decreases each year. Scrypt is already deployed by
the file-system encryption system of Android 4.4. However, we

2Password-Based-Key-Derivation Function v2.0
3http://developer.android.com/reference/javax/crypto/spec/PBEKeySpec.
html
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are not going into further details, because none of the analyzed
applications utilize Scrypt.

III. APP ANALYSIS

In this chapter, we discuss the key derivation functions of
several Android Password-Manager applications. However, the
apps presented here only represent a digest of all available
apps and have been manually selected based on their number
of users, positive ratings, and ranking in the search results
in the Google Play Markeﬂ This choice can be seen as an
empirical selection based on how a regular user would choose
a Password-Manager, when searching on the Google Play
Market. We manually analyzed 45 applications, of which we
present 8 here. We disregarded the other 37, because 14 were
obfuscated, 16 were paid apps, and 7 used the key derivation
function in accordance with our requirements. For our manual
analysis we used apktoo dex2ja1%l and JD—GU to analyze
the mentioned applications.

A. Assumptions

The conducted analysis concentrates on the deployed key
derivation functions and does not consider the implementation
of cryptographic functions required to protect the stored pass-
words.

In our scenario we assume that an attacker can gain full
access to a smartphone without platform encryptio either by
theft, loss of the device, or any other sophisticated method.
We further assume that the attacker has basic knowledge
in cryptography and is capable of extracting the file-system
and analyzing Android applications. Any person capable of
developing Android applications and using widely available
tools for analyzing the Dalvik code in the Android application
packages fulfils these assumptions.

B. PM-Appl

This Android application is a Password-Manager tool that
allows the user to enter an alpha-numeric master-password,
including some special characters, to protect the user’s cre-
dentials. According to the Google Play Market this app was
installed for 100,000 - 500,000 times (Jan. 2014). Addi-
tionally the application offers premium features to enhance
the usability. According to the developer’s website, these in-
app-purchase options do not affect the implemented security
mechanisms. Therefore, only the free version was subject of
our analysis.

The application comes with a backup functionality to store
a zip-file, including the encrypted database, on an SD-card.
While this is very convenient for data recovery, an attacker
can directly access the data on this card, without the need to
gain access to the app’s data stored on the internal storage
device (e.g., by rooting the device).

4https://play.google.com

Shttps://code.google.com/p/android-apktool/

Shttps://code.google.com/p/dex2jar/

http://jd.benow.ca

8This is a plausible assumption due to the need to manually activate the
platform encryption system on Android.

The key derivation function used to obtain a key from
the user’s master-password is implemented as follows: If the
password-length is smaller than 32 characters, the password is
repeated until the length of the new password-string is greater
than or equal to 32. The resulting string, which is at least 32
characters long, is UTF8-encoded and copied into a byte-array.
The first 32 bytes of that array are used as 256 bit key.

set password to ... /* userinput */
while getLengthOf (password) < 32 do

password = password + password;
end while

utf8_password = getUTF8EncodingOf (password)
key = getFirst32BytesOf (ut£f8_password)

Consequences: The used key derivation function does not
have the security properties of a real key derivation function
and allows very efficient brute-force-attacks. Furthermore, re-
curring patterns within the user-password are ignored. Assum-
ing a password “abababab”, the user-input ”ab” would decrypt
the data, because of the implemented repetition of too short
passwords.

C. PM-App2

This application, which is installed 10,000 - 50,000 times
(Jan. 2014), allows the user to add items with predefined fields
(type, description, account, password...). Further it is possible
to choose a privacy class, which defines the level of security
(e.g., show passwords without entering the master-password).
The items are protected by a user-defined master-password.
The password can consist of letters, numbers and some special
characters and is used to encrypt the private fields of the items.
The user-data is stored in XML files saved on the SD-card.

As key derivation function, the built-in HMAC-method
provided by the Android Platform was chosen, but the al-
gorithm is applied only once. A static UTF-8-encoded string
initializes the HMAC-function. The resulting key is then used
to encrypt the database with the AES implementation of the
BouncyCastle [26] provider.

set password to ... /* userinput */

utf8_password = getUTF8EncodingOf (password)
mac_init_value = getUTF8EncodingOf (STATIC_STRING)

key = performHMACWithSHA256 (utf8_password,
mac_init_value)

Consequences: There are two major problems with the
implemented HMAC-based key derivation function: (1) The
iteration count is set to 1, which allows highly efficient brute-
force attacks. (2) A static salt value is used, which allows to
pre-compute all possible keys. (3) Although HMACs are also
deployed by the PBKDF2 function, using this function in a
custom way comes with the increased likelihood of security
flaws, as demonstrated here with the static initialization value
and the low iteration count.
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D. PM-App3

PM-App3 was installed 1,000,000 - 5,000,000 times (Jan.
2014) and provides the ability to save credentials based on
predefined or custom groups. The database is a proprietary
binary file which can be saved anywhere on the phone. To
protect the accounts either a master-password, a keyfile or a
combination of both can be chosen. For our analysis we only
considered the former.

The program implements a custom key derivation func-

tion: (1) The chosen master-password is hashed, using
SHA-256. Two random seeds are generated using Java
SecureRandom. The hashed master password is then encrypted
using AES/ECB/NoPadding with 300 iterations. The first seed
is used as salt. (2) The result is again hashed using SHA-256.
The resulting check-sum is once again hashed with SHA-256
together with the second seed. The output is then used as an
encryption key.
To verify validity of the key, the database needs to be decrypted
in AES/CBC/PKCS5 Padding mode with the previously com-
puted key. If the decryption key is correct, the check-sum saved
over the decrypted database and the reference value will match.
Otherwise an exception is raised, indicating that the used key
was not correct.

set password to ... /* userinput */

setPassword (password) ;

key = generateMasterKey (
seed,
transformationSeed,
encryptionRounds) ;

Consequences: The iteration count is set to 300, which
results in a basic level of security. Additionally, a random salt is
generated in order to prevent a pre computation of all possible
keys. Still, compared to the reference implementation (see
Figure[I), a full brute-force attack takes on average only half as
long. It is recommended to increase the iteration count, and use
a well-known key derivation function to avoid implementation
mistakes.

E. PM-App4

PM-App4 is a simple Password-Manager. According to
the Google Play Market it was installed 100,000 - 500,000
times (Jan. 2014). It offers the ability to add credentials, notes
or URLs. Additionally, passwords can be generated with a
built-in password generator. The application saves the provided
information in an SQLite database on the internal storage, but
provides a possibility to export the database to another storage
location (e.g. the SD card).

Similar to the PM-App2 mentioned in section [[TI-C| this
application uses an HMAC as key derivation functions, which
takes a static-key and a user chosen master password as input.
To verify the derived master key, cyclic redundancy check
(CRC32) has been implemented. The checksum is saved as
a base64 string in the database. Since the implementation
resembles the one of PM-App2, the resulting pseudo-code
looks similar (see section [[II-C).

Consequences: In general, an HMAC, given enough it-
erations, fulfils the requirements of a secure key derivation
function. However PM-App4 initializes the HMAC with a
static salt, allowing the pre computation of all possible keys.
Additionally only one round is utilized to derive the key. This
allows for very efficient brute-force attacks.

F. PM-App5

In addition to storing credentials, PM-App5 allows to
protect other sensitive data, such as credit card or bank account
information. Also, online-sync via Dropbox can be setup as a
backup solution. This app was installed 500,000 - 1,000,000
times (Jan. 2014).

The key is derived via the build in PBEKeySpec?2 function
using 100 iterations and a random salt. In addition to that, PM-
AppS saves a SHA-512 hash, including a salt, of the master
password in its preferences file to validate the entered login
information.

set password to ... /* userinput */

checksum = getSHAS512Hash (password)

Consequences: PM-APPS5 uses the built-in PBEKeySpec?
function in order to derive a key, which in practice provides
sufficient security. However by saving the hashed master
password, an oracle is provided that allows the verification of
an input password in a fraction of the time of the actual key
derivation function. This significantly simplifies brute-force
attacks. Also, the SHAS512 hash operation is only performed on
the passcode, which allows to pre-calculate password tables.
Also, the iteration count of the deployed PBEKeySpec? should
be increased to increase the time required for brute-force
attacks.

G. PM-App6

PM-App6 ships with a Desktop client to automatically
sync login information via different devices. This app was
installed 100,000 - 500,000 (Jan. 2014). Credentials cannot be
manually added on the device but rather have to be created on
a computer. PM-App6 saves each retrieved login information
in a file on the external storage of the device.

To display the login information, a previously chosen mas-
ter password has to be entered. Conveniently this information
gets stored in the preferences file together with the username
and password of the account. The app stores the data in an
obfuscated, but not encrypted representation. The obfuscation
and de-obfuscation process is based on methods that can easily
be extracted from the application code.

Consequences: The master password can be directly ex-
tracted by calling the methods used for de-obfuscation without
the requirement for a brute-force attack.

H. PM-App7

This Password-Manager allows users to manage passwords
only. According to Google’s Play Store this application was



installed 100,000 - 500,000 (Jan. 2014) times. The application
itself is protected by a four digit PIN code which can be chosen
at the first startup. However, after minimizing the app the PIN
code is not required anymore until the application is either
manually closed via the task manager or the Android operating
system removes it from the memory.

Our investigation has shown that this application does not
use any key derivation or encryption at all. Furthermore, our
analysis shows that this app is vulnerable to SQL injections.
The following code shows how the master password is stored
into the database:

set password to /* userinput */
query = "INSERT into TABLE_NAME
values (1, '"" + password + "');"

The unlock functionality in the application is implemented
by comparing the plain text PIN code from the database with
the entered PIN code at the startup of the application.

Consequences: By reading the database on the device the
attacker can read the master password (PIN code) and all the
stored passwords in plain text.

1. PM-App8

This application is installed 50,000 - 100,000 (Jan. 2014)
times. The app provides the ability to store passwords, credit
card information, account data and addtional information.
Access protection is based on a digital master key that must
be defined by the user when the app is started for the very first
time. This master key is required when starting or resuming
the application.

Our investigations reveal that the custom key derivation
function consists of three variables, where one of them is
the iteration count. Thus, the entropy for the key depends
on the other two variables. Both of them are calculated by
misleadingly named methods implemented in different classes.
Taking a closer look at the implementations of these methods
reveals, that both methods are based on shuffling and replacing
bytes of a static initialization array. As a result these methods
do not provide sufficient entropy.

Consequences: The key is derived from static values and
the master password does not influence the encryption key.
In fact, the master password is stored in the database and is
encrypted with the aforementioned static key.

We were able to mount an attack by using the same
statically defined variables on all encrypted information stored
in the database. Thus we were able to decrypt the master
password and all user stored passwords by just retrieving the
database from the device and decrypting the values using the
aforementioned approach.

IV. BRUTE FORCE COMPARISON

To compare the security level of the identified key deriva-
tion functions, we have implemented a brute-force tool. The
Java-based tool analyzes the mean execution time by executing
1000 iterations of a given key derivation function. Additionally
we have implemented a tool to recover the master passwords

of the analyzed applications. To achieve comparable results
and attach a price tag to the brute-force attacks, we used
the Amazon EC2 infrastructure. The brute-force times were
calculated by using one "EC2 Compute Unit’ﬂ (ECU), which
—referring to Amazon’s definition — is the equivalent of a 1.0 to
1.2 GHz 2007 Opteron (AMD) or 2007 Xeon (Intel) processor,
as a measurement unit. This way, we can extrapolate the time
needed to launch a full brute-force attack, as can be seen in
Table [T] but it also allows us to calculate the costs for such an
attack. The brute-force times and costs have been calculated
for 1 ECU. The current price for one CPU hour on a small
on-demand instance with 1 ECU is currently 0.06$. This price
could be further reduced by reserving instances. However, the
conducted calculations should only give a general estimate
of costs and thus, further optimizations, such as dedicated
hardware, the use of GPUs, or different pricing models have
not been considered.

For ease of comparison, we developed a reference imple-
mentation, that uses PBKDF2 with HMAC-SHA1 and 1000
iterations, as shown by T. Johns [27]. The brute-force times
in Table E] have only been calculated for 1 ECU. However,
due to the effective parallelization of the brute-force attacks,
an arbitrary number of instances could be reserved (within
the limitations set by the Amazon EC2 infrastructure), which
would reduce the brute-force times accordingly (divided by
the number of instances), without influencing the brute-force
price.

V. COMMON PROBLEMS

While analyzing applications for this paper, we found many
security issues and implementation errors. The most common
problems can be summed up in four categories:

No Encryption: In some cases, no encryption functionality
has been utilized to protect the sensitive data.

No Key Derivation Function: Some applications did not
use a key derivation function at all. UTF8-encoding or similar
functions are not suitable key derivation functions and allow
either highly efficient brute-force attacks or — even worse — the
direct extraction of the encryption keys or the protected data.

In case a key derivation function is implemented, the
following common issues could be identified:

Low number of iterations: Even, if an adequate key
derivation function was used, in many cases a low iteration
count was chosen. Combined with the fact that rather short
passcodes are used on mobile devices (due to usability), this
leads to highly efficient brute-force attacks. Unfortunately,
there is no universal answer to the question on how many
iterations should be used. The number of iterations depends on
the use case, the available hardware and the right balance of
security and usability for the envisaged deployment scenario.
A possible approach in solving this problem is the utilization
of so-called calibration functions that calculate the number
of iterations for the given key derivation time on the current
device.

Static salt: In many cases the salt value has not been
chosen randomly. Either a static salt has been used, or one

9http://aws.amazon.com/ecZ/faqs/#What_is_zm_EC2_Compute_Unit_and_
why_did_you_introduce_it
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Numerical Alphanumerical

Alphanumerical Complex
lower/uppercase lower/uppercase letters, numbers and
letters and numbers symbols

10 numbers 10 numbers, 26 letters 10 numbers, 52 letters 10 numbers, 52 letters, 45 symbols
Passcode length 4 6 8 4 6 8 4 6 8 4 6 8
Possible characters 10 10 10 36 36 36 62 62 62 107 107 107

Possible passcodes |1,00E+04 (1,00E+06

1,00E+08 |1,68E+06 |2,18E+09 | 2,82E+12 [1,48E+07

5,68E+10 2,18E+14 [ 1,31E+08 | 1,50E+12 1,72E+16

Application

Days to try out 100% of passcodes

Reference
implementation
Time/Costs

PM-App 3
Time/Costs

PM-App 1
Time/Costs

PM-App 4
Time/Costs

PM-App 2
Time/Costs

PM-App 5
Time/Costs

PM-App 6

PM-App 7

PM-App 8

31 402.945 8.113  31.185.942 214352 2.454.118.730

LR $ 580.240 $3

39.009

$56.173

520688

$11.683 $44.907.756 Lyl $ 308.667  $3.533.930.971
8 10.726.632 73.728 844.112.058

$ 15.446.351 Xl $106.168 $ 1.215.521.363

3.019.105 20.751 237.582.791
$4.347.512 $29.882 $342.119.218
1.111.917 1 7.643 87.500.222

$1.601.161 .’I $11.005 $126.000.320

51.448.937
$74.086.470

9.208.205

$13.259.815

Fig. 1: Brute-force times (days) and costs ($) for the described applications: The values are calculated based on the mean execution time (1000
iterations) of the key derivation function. 0.0 indicates, that the password can be recovered without a brute-force attack (PM-App 6, PM-App
7, PM-App 8). Passcodes with brute-force costs are marked in the folling way: 0$ to 99.999% (black), 100.000$ to 199.999% (grey), from
200.000$ (white). The thresholds for these colors-markings have been chosen arbitrarily and are intended to provide a better overview of the
table. A categorization based on the risk level, depends on the deployment scenarios and the results of a carefully conducted risk analysis.

that can easily be derived from device-specific identifiers (e.g.
the IMEI). Since, the main purpose of the salt is increasing the
entropy and thereby eliminating the possibility to pre-calculate
password tables, an inadequate choice facilitates attacks.

Implementation/Design errors: Our analysis reveals that
in many cases implementation errors or weak design choices
have a strong negative impact on the achieved security level.
(1) Oracles: While application developers use existing key
derivation functions in the right way, in some cases “oracles”
where created that allow a brute-force attack to circumvent
the key derivation function. (2) Custom implementations:
There are many sources that strictly recommend against the
custom implementation of cryptographic functions due to the

likelihood of implementation or design errors. Still, these
custom implementations exist in security-critical applications
and unfortunately, often include mistakes that significantly
decrease the level of security. (3) Wrong parameters: Even if
a proper key derivation function is deployed its parameters are
often used in a wrong way. The aforementioned parameters
”salt” and “number of iterations” are an example for such
parameters. However, newer key derivation functions, such
as Scrypt include additional parameters that need to be set
correctly — depending on the deployment scenario — by the
application developers.



VI. CONCLUSION

Since password-based authentication is still a commonly
used system, choosing secure credentials and providing secure
storage is a crucial aspect for account security. Password-
Managers that are typically used to store such credentials
mostly rely on key derivation functions that derive cryp-
tographic keys from master passcodes. Unfortunately, the
analysis of popular Android Password-Managers reveals, that
despite the fact that secure key derivation functions are offered
by the standard operating system APIs, many implementation
mistakes are made by the developers. These errors significantly
downgrade the level of security offered by the Password-
Managers and result in very efficient brute-force attacks, or
even worse, the direct extraction of the sensitive data. It should
be noted at this point, that, even tough we analyzed only
free and non-obfuscated applications, the outcome is not less
valuable. Free applications should provide, up to a certain
point, the same amount of security as commercial programs.
Additionally some of the analyzed applications were available
as a paid version as well. To some extend it is therefore
possible to draw conclusions from its free counterpart. Based
on our initial analysis we conclude that secure implementations
— especially within a mobile context — are not yet the standard,
even in security-critical applications.

Although the analysis in this paper has been limited to
Password-Managers, many other applications, such as con-
tainer applications deployed in BYOD scenarios or mobile
banking applications, also require password encryption sys-
tems. In that sense, this paper only represents a first step in the
direction of evaluating the security of password-based encryp-
tion functions in mobile applications. In ongoing and future
work we aim to simplify the current manual analysis procedure
by using automated static and dynamic analysis tools, and
to extent the scope of our analysis to other applications and
platforms.
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