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Abstract:
In this paper we present o new image denoising approach based on wavelet thresholding and

the Minimum Description Length (MDL) principle. Considering the probability distribution
of the wavelet coefficients, we build a function based on the principles of MDL. Looking for a
minimum of this function, our model allows us to automatically choose the necessary threshold
value for image denoising in the wavelet domain. The method has been tested on several
different 1mages including Computer Tomography data. The results show the effectiveness of
the method to different kinds of noise and different levels of it. Our method is compared with

previous wavelet denoising approaches.

Keywords: Image Denoising, Wavelet thresholding, Minimum Description Length, Filtering,
Computer Tomography.

1 Introduction

The image restoration process we consider in this work consists in the removal of noise that
degrades an image. Since Donoho and Johnstone [2], [5], [6] proposed the use of wavelet
thresholding for denoising 1-dimensional signals obtained with additive, white noise, different
approaches and methods have been developed [1], [8], [10], [16]. Cherkassky et al. applied
wavelet thresholding using Vapnik-Chervonenkis (VC) theory to select the wavelet coefficients
on 1D signals and images [8], [17], [18]. This approach has the advantage that it is based
on Statistical Learning Theory (SLT) [19], [20], which provides a theoretical framework for
function estimation from finite samples. Recently approaches based on Minimum Description
Length (MDL) principle have been developed [16], [10]. These methods are focused on wavelet
denoising and efficient compression of the images. In this paper we compare several approaches
and propose a novel MDL formulation with the goal of denoising. Under the MDL framework,

we derive a function based on the distribution of the wavelet coefficients. The minimization of

b This work was supported by the FWF under project number P-14897.
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this function provides the coefficients of the denoised image. This paper is organized as follows:
Section 2 shows the main ideas of wavelet denoising methods. In Section 3 we introduce our
model. Section 4 presents some results using our method and a comparison to other wavelet

denoising methods. Conclusions and discussion are presented in Section 5.

2 Wavelet denoising

In signal processing, a popular approach for approximating a function f is to estimate it as
a linear combination of basis functions g,. Popular basis functions g; used are orthonormal
basis functions as Fourier series and more recently wavelets [3], [4], [8], [10], [11], [12], [16].
Wavelets have received more attention in recent years due to excellent properties of decompo-
sition on frequency and scale domain simultaneously which allow us to treat non-stationary
signals. In recent years, several authors proposed wavelet-based methods for signal denois-
ing and compression [1], [8], [10], [12], [16]. Basically, these methods consist of following steps:

1) Obtain the wavelet decomposition of the image,
2) select a threshold value using a specified criteria,
3) perform the inverse wavelet transformation to obtain the denoised image.

The main difference between the different approaches is the selection criteria in step 2. Re-
cently models based on the Minimum Description Length (MDL) principle were applied to
the problem of wavelet denoising. The basic idea of the MDL-criterion is to choose the model

that gives the shortest description of the data.

3 Minimum Description Length (MDL) and our Method

3.1 MDL Approach

The principle of Minimum Description Length (MDL) was introduced by Rissanen [14]. This
criterion has been succesfully used for wavelet denoising by DeVore et al. [1], Moulin [12],
Moulin and Liu [13], Saito [16], and Hansen and Yu [10]. MDL has been used successfully in
other areas such as cluster analysis by Wallace [21] and image segmentation by Leclerc [9]-
The MDL criterion suggests to choose the model that gives the shortest description of the data
among a given collection of models. For each model in the collection, the data can be related
with codelength of encoding the data and transmit them [15]. Saito presented an algorithm
for suppresing the noise component and compressing the signal component [16]. Hansen and
Yu derive a criteria based on a Laplacian model for noiseless wavelet coefficients [10].
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3.2 Our model

In order to use MDL for wavelet denoising we need to define a coding scheme. We S
following assumptions:
1) The coefficients describing the true signal are modelled by a Laplacian distribution (similar
to [10]) .
L = — —)‘le c %'
(w) 5 e , w (1)

2) The coefficients associated with the noise component of the signal are an i.i.d. sample from
a Gaussian distribution as in [10]

2

e_wT;g_
G(w)za Pl we R (2)

Using this distribution we need to specify for each coefficient where it comes from. This can

be done by a binary mask which can be coded by
CL (Wn) = IOg (n) ’ (3)

bits, where n is the number of wavelet coefficients.
Therefore we model the cost of description the whole image by

CMDL (w) = CL (W.,-) —+ CG (Ws) + CL (Wn) . (4)

where Cf, (W,.) is the cost of transmission of the r coefficients coded by the Laplacian dis-
tribution, Cg (W;) is the cost of transmission of the s coefficients coded by the Gaussian
distribution (n = r + s). Using the optimal Shannon code, (4) can be expressed as

W—p

o

A _
Cupr (W) = log (56 '\T|WI> +log | Z Nors +log(n). (5)

After further simplifications, this yields following the function to minimize
arg mui/n[LGM DLW D (W)] = arg mui/n[— log (\,o5n)], (6)

where ), is estimated under (1), o, is estimated using (2) and n is the total number of wavelet

coefficients. To minimize this function the coefficients are ordered by

w1
freq

W2

> . >
freqs

W,
Frea. I - (7

This order was suggested by Cherkassky et al [8]. The idea of this order is to penalize higher-
frequency wavelets. The smooth subband LL(m) (where LL is the Low-pass component of the
wavelet decomposition and m indicates the highest level of decomposition) is not included in
this order because these coefficients are always kept. These coefficients correspond to the parts
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of the image with the lowest frequencies (i.e. smooth areas), and should therefore be kept.
The first r coefficients according to the order (7) correspond to the wavelet coefficients of the
original signal and the remaining s coefficients (s = n — r) correspond to the noise component
of the image. According to MDL we have to find r such that we minimize (6).

Figure 1 shows functions LGM DLW D (W) of the images used in Section 4. Once the mini-
mum of the function LGM DLW D (W) has been found, the denoising procedure keeps the r
most important wavelet coefficients of the order (7) (LGM DLW D (r) = m), sets the other s

(s = n — r) coefficients to zero, and reconstructs the image using the inverse discrete wavelet

transform.
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Figure 1: LGMDIWD functions for ‘Lenna’ (Solid line), ‘Baboon’ (Dash line) and ‘CT’ images
(Dash-dot line). LGMDLWD function vs. Wavelet coefficients.

4 Results

We have tested our algorithm on different kinds of images with different types of noise at
various levels. The images used were standard images such as ‘Lenna’ and ‘Baboon’, and &
set of computer tomography image (named ‘CT’). In the case of ‘Lenna’ and ‘Baboon’ we
added additive, white Gaussian noise and multiplicative speckle noise. In both cases different
noise levels were added. On the ‘CT’ image we did not add any kind of noise because the
image contains it. Due to space reasons we include here only some results (For more of them,
see [7]). All the images used have a size equal of 512 x 512 pixels. We compare our method

against previous wavelet denoising methods. The methods used as benchmarks were:

e The SURE method proposed by Donoho and Johnstone [2] with hard thresholding (Here
it will be referred as SUREHTWD).
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(a) Original image. (b) Denoised image. Decomposi-
tion level = 3. Method used:
HMDLWD.

(c) Denoised image. Decomposi- (d) Denoised image. Decomposi-
tion level = 9. Method used: tion level = 3. Method used:
LGMDLWD. LGMDLWD.

Figure 4: CT image. Original image (a) and denoised images using Hansen method with
wavelet level decomposition equal to 3 (image (b)) and our method with 2 different wavelet
level decomposition (images (c), and (d)).

obtained on ‘Lenna’ with different levels of additive, white Gaussian noise across the different
levels of wavelet decomposition. Table 2 shows the SNR obtained on ‘Lenna’ and ‘Baboon’
using different wavelet denoising methods. The wavelet basis used in all the restoration pro-
cesses was ‘biorthogonal 6.8’ [3].

Analyzing the SNR obtained from the highest decomposition level (level 9) to the level 3,
it can be seen that the SNR has the same order for a fixed level of noise added, e.g. with
noise level o = 5.0 the SNR varies in the interval [22.28,24.18], which indicates that our
method works well independently of the wavelet decomposition level. Other wavelet denoising
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(0 =0.5) | (6=05)| (c=50)| (c =5.0)
Decomposition level | SNR (db) | % WC SNR (db) | % WC
1 19.28 27.55 10.42 27.09
2 22.28 11.05 14.48 9.95
3 23.84 9.65 17.60 7.53
4 24.09 9.52 18.43 7.32
5 24.18 11.14 18.48 7.31
6 24.14 12.17 18.32 7.96
7 24.14 12.17 18.21 8.36
8 24.13 12.34 18.19 8.36
9 24.13 12.34 18.19 8.36

Table 1: SNR and percent of wavelet coefficients used on the restoration. ‘Lenna’ with additive

Gaussian noise. Image size = 512 x 512 pixels.

[ Method ‘Lenna’ (¢ = 0.5) | ‘Lenna’ (¢ = 5.0) | ‘Baboon’ (¢ = 0.5) | ‘Baboon’ (¢ = 5.0)
| SUREHTWD 22.44 19.85 18.08 15.22
CVCWD 23.91 19.58 19.30 10.74
HMDLWD 24.57 18.04 18.78 14.16
LGMDLWD 24.13 18.18 16.47 13.50

Table 2: SNR obtained using different methods. ‘Lenna’ and ‘Baboon’ with different levels of
additive Gaussian noise and image size = 512 x 512 pixels.

methods, like the one proposed by Hansen et al. [10] do not show this behaviour, i.e., the
denoising results depend strongly on the wavelet decomposition level. In general one can see
that our method performs similar to other methods but unlike other methods all parameters

are obtained automatically.

5 Conclusions

We introduced a novel method for denoising images based on Wavelet thresholding and Min-
imum Description Length. We show that our method is effective to denoise different types of
images with different levels of noise introduced on them. Regarding the quality of the restora-
tion we want to note that our method performs well, in terms of SNR, accross the different
images, and levels of noise. Our method performs similar in terms of SNR levels as other
|methods, but our approximation needs less parameters to tune. The results of our method
when it is applied to CT images are promising. The method has eliminated much of the noise

present in smooth regions, while the borders have been preserved.
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