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ABSTRACT

This paper presents and analyzes a method for the interpolation of a
unique surface from two sets of independent digital height data of dif-
fering statistical characteristics. This method is based on linear pre-
diction and thus relies on the concepts of auto- and cross-covariance
functions,

The linear prediction algorithm for two sets of digital height measurements
is first derived and then evaluated using the method of moving averages
and bilinear interpolation for comparison. It is found that the overall
root mean square interpolation errors of linear prediction are similar to
those from moving averages and bilinear interpolation. This accuracy
performance, together with the well known potential for controlled fil-
tering of measuring errors and good-behavior in areas of poor control,
makes linear prediction a versatile and general method for interpolating

a unique surface from two sets of digital height data, with applications
in photogrammetric mapping, remote sensing, and other fields.

1. INTRODUCTION
It is not uncommon in topographic mapping for surface heights to be .
sampled in two or more sets of measurements of differing origin and
accuracy. In photogrammetry, such a case can occur in the overlapping ’
area of two stereomodels, where each stereomodel provides a different
set of measurements for the relief of a mapping surface. Another example
is photogrammetric acquisition of digital terrain data by profiling along
meanders: profiles scanned in opposite directions provide diffefent bets
of measurements. Two samples of surface heights are also available when
tacheometric and photogrammetric data or data from different sensors
(imaging radar and altimeters) have to be combined.

Kraus (1973) was the first to address the problem of merging two sets

of photogrammetric measurements using linear prediction and filtering.
The formulation chosen by Kraus required a restrictive a priori assump=
tion that makes the prediction algorithm applicable to only two sets of
measurements of identical statistical properties. The current paper will
extend the linear prediction algorithm to applications to two sets of
measurements of differing statistical behavior.
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In the terminology of statistics, the different sets of measurements are
staken from a random function. In the general case, the random function
could be n-dimensional, and defimed on an m~dimensional space. In the
case of topographic mapping, this random function (the terrain surface)
is one-dimensional, and defined on a two-dimensional reference space
(Leberl, 1975). The present study will limit itself to this case of
topographic mapping.

A linear prediction algorithm will first be derived for the case of more
than one set of measurements and then evaluated by comparing it to other
interpolation methods using simulated surfaces and measurements. It will
be shown that rdot mean square interpolation errors from linear pre-
diction are about equal to or only slightly smaller than those from a
moving average algorithm or bilinear interpolation.

-

2. STATISTICAL MODEL OF A SURFACE AND OF ITS MEASUREMENTS

A surface z = z(x,y) can be represented as the sum of a trend t(x,y). a
signal ,8(x,y), and almost uncorrelated component r(x,y):

cz(x,y) = t(x,y) + s(x,y) + r(x,)') L

Figure 1 illustrates the concepts of trend, signal, and component r in one
rather than two dimensipns. Trend t 1s not considered to be a random
furiction but a deterministic entity. Signal s is a random function,
whose’ statistical properties are described by a covariance function'C_(d),
with d being a distance. The covariance of r is denoted by C_(d).

The following relations hold: r

lim Cc (d) = O
dre 8

C.(d) = 0 for d # 0
€_(d) > 0 for d = 0

For the benefit of a simplified notation, the argument of the covariance
function will not be explicitly indicated (thus C_ = C_ (d)). The con-
cepts of trend, signal, noise, and covariance function have been explained
in detail in the photogrammetric literature by Kraus and Mikhail (1972).
This explanation 1s, therefore, not repeated here.

~ R-COMPONENT

REFERENCE

Figure 1. Illustration of the decomposition of the terrain surface into
a trend (long-term variation), signal (random function with extended
auto-covariance function), and & random function with auto-
covarlance function approaching zero for distances d > 0 .
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A discrete measurement z = z'(xi,y ) of the surface z(x,y) is by neceasity
erroneous. If the measurement 18 p%otogrammetric, then it is indirect;
namely, through a stereoscopic model. 1In this case of indirect measure-
ment, measuring errors can in the general case consist of a trend, signal,
and noise: '

z' =z +t'+ 8! +r! {i=1,2, ... n (2a)

'
i i i 1 i

- . ' 1 '
ti + Bi + ri + ti + Bi + ri

A second set of independent measurements z; consists of

z; - zj + t; + s; + r;, j=L2, ... m (2b)
The statistical properties of si, ri, 832 ri'are again described by
covariance functions C;, Cg, C;, C:.

Linear prediction will here be applied to random functions, but not to the
deterministic components t, t', t". The components e', e" of the mea-
surements after trend elimination are composed of

[ - ' '
ey = 8, + 84 + r, + . (3a)

"w o n [1]
ej sj + sj + rj + rj (3b)
and the covariances of e', e" are C', C". Linear prediction should now
provide estimates of s on the basis®of &', e". For this purpose, the
relationships among covariance functions have to be established. It is
assumed that s 1s not cross—correlated with s' and s", and that
r, r', r" is completely uncorrelated.

One thus obtains

c'=¢Cc +C'+C'+¢C (4a)
e 8 8 T r
c"=C +C"+C"+C (4b)
e 8 8 T r

= +C
Cogt = Cy + C g L (4c)

Cleu(d) is the cross-covariance among the random components of the
mé&surements, and C ) x(d) is the cross-covariance of the signal of the
measurement error. C', C" and Cncan be computed from the mea-
surements; Ce’ C;, C:, Césuare unknown.

The above represents the case of two sets of measurements. If a third
set 1s available, then one must add to Eqs. (4):

c" a(C + c"™ o+ C" +C
e 8 8 r r

ce'e“- C +Cum +Cr
8 88

| . Ce™ Cg ¥ Cogu + C,
Generalization to more than three data sets 1s straightforward. One

thus obtains a set of constraints among those covariance functions
which enter into a linear prediction algorithm.

519



[

3. LINEAR PREDICTION WITH MORE THAN ONE SET OF MEASUREMENTS

3.1 Prediction algorithm , *

Linear prediction 1s based on those components ei, e, . . ., of the
original measurements which are left after trend eli&ination (see
Eqs. 3). The prediction algorithms provide an estimate § = B(x,,y,) of
the surface signal 8, using the following expression in m%trix r%ta ion
(Yaglom, 1962; Kraus and Mikhail, 1972):

-1 T

i Ei-g_-g ‘e &)

where .

e~(e',e,..,) = (ei. eé, Se. %;; e, eg, - e;; ves)

Vector e contains the different sets of measurements reduced for trend.

Matrix Q contains the covariances of vector e and thus specific values

of the funetdons C', €", C'", Vector glconsists of specific values of
c '

the cross-covarianfe fEnctf%ns [ ;, ga’ *** » between signal 8 and
vectors e', e", respectively,

3-2 Covariance functiona

L.uear ptrediction requires knowledge of covariance functions C', C", ...,
Cons »ee 3 C ' C" ... The firat two of these three group§ of®func--

ard algorithm for covariance computation as described, for example, by
Kraus and Mikhail (1972). Inputs to thias computation are the sets of

ei, ey, ..., values obtained after trend elimination. The empirical
covariance values obtained for a number of distance classes

dj = &d < d < d, + Ad are used to fit a positive definite function with two
variables C0 ané Cl.an example of such a function is:

o) = —Q__ (6)
~1+4d /c1

The discontinuity of C(d) for d=0 represents the sums (C_, + C Yo (C.,+cC)
(see Kraus and Mikhail, 1972), r = r r

Functions Cse,,C e"s» -+ cannot be computed directly. However, since 1t
can be assumed that g 18 not cross-correlated with s', g8" cass ', ",
+++3 T, one obtains, from Eq. (3),

.C =~ .., =( (7)

se' = Cgen 8
A pair of equations (4a,b) allows the formulation of an explicit expres-
sion for Cs:

" (cev . c!" - Cr} ¢ csn - (Ceu - Cru ' cr) ° Csl @)
] Ca.; b CB'

If more than two sets of measurements are available, then Eq. (8) can be
formulated for any pair of these. Covariance functions Cois Cuty vouy
are required for the determination of C_ but are not accessible to direct
computations. They describe the statiatgcal properties of the signals

s', 8", ..., of the errors of measurement. If these functions cannot be
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determined in a calibration procedure of the measuring process, then
there {8 only the alternative of an a priori assumption. Postponing the
discussion of the specific statistical meaning of such an assumption, it
appears convenlent to postulate proportionality of the covariance
functions:

. Csl =a ° Csn 9)
Equation (8) can be evaluated for any assumed proportionality factor
a#$ 1l. For a =1, however,C cannot be solved from Eq. (8). In that particu-
lar case, Cg can be found from Eq. (4c) 1f an assumption can be made

concerning Cr and Cs's"’ e.g.:

CSISH =Db . CSI =c - CB" (10)
It should be stressed, that Eqs. (9) and (10) are at this time arbitrary
choices from an infinite number of possible relationships. One could at
this point expand to the case of more than two sets of measurements.

The digcussion will, however, be limited from here on to the particular
case of only two sets of measurements.

3.3 Interpretation of covariance relations (9) and (10)

In order to attach some statistical relevance to parameters a, b, and ¢

in Eqs. (9) and (10), 1t is helpful to examine the case of two sets of
measurements, of which one is more accurate than the other. The measurementa
should thus be weighted appropriately:

2
Cgr =P+ C_u 1)
If one would interpolate two surfaces, each from one of the two independent
measurement groups, and then take a weighted mean, one would imply:

g' = -p ., 8" (12)

Obviously Eq. (12) would in turn imply the validity of Eq. (11) and:

1
Ca's" = -p . Cs" - - ; . CS' (13)

2

Thus 1
a=p; b = -p; c=3

However, one 1s not free to assume a value P intuitively if use is to be
made of the computed covariance functions C 1» C sy C 4 uw. The value

must be chosen in such a way that Eqs. (4) are sfmultgngously fulfilled
by Eqs. (11) and (13). This leads to

- Cot = Cv - C - Ceten
P Cen - Crn el Cr - Ceven

(14)

It should be noted here, however, that Eq. (14) can produce different
values of p for different values of the independent variable d (distance)
entering the covariance functions. Only 1f functions C " Ce" and C 1"

are strictly proportional can a single value p = constant be obtained.
Figure 2 1s an example of actually computed functions C 1ty C oy C 4y e

These functions pértain to numerical experiments descrifed 1f Secfibn 5.

The p-value resulting from the functions of Fig. 2 i{s 2.7. 1In Pig. 2 C... c
and C 1en have their maximum at d=0. This is not always the case for ce‘e"'
This in itself already would create a dependency of p on d.
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Figure 2. Covariance functionms C!, C", C':, and C
as obtained for two simulated sets of measurements.
1f indeed the covariance functions C_,, C_u, C_y . u 8re not proportional,

e

then one must either choose an average value of p taken over a range of
definition of the covariance functions, or CB is evaluated separately
for each distance d from Eq. (8).

It might be of interest to point out here that the case treated by
Kraus (1973) is a specialization of the discussion presented in this
paper. Postulating interpolation of a surface that represents the
arithmetic mean of the two measurements, Kraus' formulation implies
p=1, and thus also a =1, b =c = -1, Equation (8) can not be evalu-
ated in this case. Equations (4), however, show that then

CS - Ce'e" - Cel - ce'e" - Ceu (15)

3.4 The concept of trend and trend elimination

Linear prediction is theoretically applicable to data which fulfill the
criteria of statistical stationarity (mean is constant in different
parts of a random function) and homogeneity (covariance function is
constant). Actual data, however, only very rarely can be called
stationary or homogeneous. Here the concept of trend is helpful. By
breaking up an originally large data set into many subsets, computing

a trend, and eliminating it from each data subset, one can hope to
achieve stationarity and homogeneity of the residuals. These can then
be further processed by linear prediction.
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This procedure is quite straightforward and rather unambiguous for
measurements with trend-free errors. For a single set of measurements,
trend computation can even be carried out simultaneously with prediction
in a process of leaat squares collocation (Moritz,1973). It turns out
that results from linear prediction are not actually overly sensitive to
the theoretical requirement of stationarity and homogeneity, and that no
special|care needs to be taken in the trend computation, which is gener-
ally just the definition of a largely overdetermined polynomial of low
order (lst, 2nd, or 3rd order).

f
But when trend elimination concerns trend in the measuring errors, then
its purpose is entirely different. 1f a significant trend 1s present in
the measuring errors, then this means a low absolute accuracy of the
measurements. Therefore, trend elimination represents a way of improv-
ing the absolute accuracy of the measurements prior to the actual inter-
polation. In the case of a single set of measurements, there 1is
absolutely no means of defining this trend and eliminating its effect.
If two independent sets of measurements are available, then some modest
means is given to eliminate a trend from measuring errors and to improve
the absolute accuracy of the measurements.

According to the model of topographic height measurements presented in
Eq. (2), measurements z}, zj can in general contain three different
trends: t, t', t". Trénd elimination could start by computing a poly-
nomial pol(x,y) using z' and z" simultaneously, and then defining two
other polynomials pgl'(x,y), pol" (x,y) using z' and 2" separately.

If then, for example, measurements z' have trend-free errors, one can
expect that (see Fig. 3)

t (x,y) = pol'(x,y)

t'(x,)’) =0

t" (x,y) = pol"(x,y) - pol’ (x,y)
It should be obvious that elimination of a trend in the measuring errors
will in most cases require intuitive judgment, particularly if data

points are not uniformly distributed and thelr density varies from one
data set to another.

MEASUREMENTS z'
(TREND-FREE ERRORS)

Figure 3. Illustration of trend and its elimination from the mea-
surements. 1f one set of measurements has trend-free errors (is
of high absolute accuracy), then a trend in the errors of the
other measurements can be computed and eliminated (shaded
area represents trend t" of measuring error in z").
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" 4. OTHER METHODS OF MERGING TWO SETS OF DIGITAL HEIGHT DATA

* Linear prediction is but one of many methods of merging two sets of
measurements for interpolation of a unique surface., The methods of
moving aveérages and blinear interpolation are alternatives used in the
present context to evaluate the overall performance of linear prediction.

A moving average algorithm selects the n measurements closest to the
X ¥ location at which z is to be estimated (see Fig. 4). A poly-
nomial of order m (usually m = 1, 2, or 3) is fit through the n data
points, giving each of them a weight according to the distance from the
estimation point. A moving average can be applied to two sets of
measurements by appropriately weighting each of the sets. The weights
w(d) attributed to the measurements can be of the type

»
¢

_%
14+ df

w(d) = (16)

-

whére‘phrameterslco

Bilinear interpolation is used in an algorithm selecting the four closest
data points for each new computation. A bilinear polynomial is used to
compute the new height independently in each set of measurements, thus
resulting in two independent estimates z', z'", from which a weighted
‘méan z is computed.

and k must be chosen subjectively.

5. NUMERICAL EVALUATION OF THE METHODS USING SIMULATED DATA

5.1 Surface measurements

A rather simple method for simulating trend, signal, and noise was
devised for the study. This method is based on the fact that a differ-
entiation of trend, signal, and noise is basically only a matter of

X X X
CRITICAL CIRCLES

X
ESTIMATION X
POINTS X
DATA POINT
/— &
X
X
X

X

Figure 4. 'Moving average" interpolation selects the n
(n=16 here) closest data points per estimation and fits
a polynomial through the data using appropriate weights.
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scale: what seems to be a trend at a certain scale might be a signal at
a smaller scale, and be interpreted as noise if scale is further reduced.
Recognizing this, one method can produce all components of a surface.
Normally distributed values are generated in the intersection points of

a gquare grid (see Fig. 5). Next, the slope of the simulated surface 1is
computed in the directions of the gridlines, using adjacent height values
according to Fig. 5. For each grid mesh, four height and eight slope
values define a polynomial with 12 coefficients, using an approach
devised by Jancaitis and Junkins (1973).

Input to the evaluation is then a set of simulated measurements of a
surface, given on a grid of 10 x 10 points to be used for linear predic-
tion. The center of each grid mesh serves as checkpoint. Figure 6
presents a set of profiles to i1llustrate an example of a pair of
measurements of a surface.

5.2 Results

Tables 1 and 2 present the root mean square (rms) differences between
the interpolated and the given height at 81 checkpoints. The computa-
tions used the simulated measurements illustrated in Fig. 6. The rms
interpolation errors are shown as fractions of the rms errors which
result from bilinear interpolation.

Interpolation with the moving average method employed a weight w(d) for
each data point according to Eq. (16), using k = 4. Linear prediction
requires four covariance functions, namely C ,, C 4, C , n, obtainable
directly from the measurements e', e'", and Ce, which misf be computed
from Eqs. (14), (11), (8), or (15). Figure 3 illustrates the computed
and smoothed covariance functions pertaining to the data shown in Fig. 6.

An obvious conclusion may be drawn from Tables 1 and 2: rms interpola-
tion errors are similar for the methods of linear prediction, moving

averages, and bilinear interpolation. Differences amount to only about
15%. This overall result confirms experimental data obtained in other
studies on interpolation (Leberl, 1975). The main loss of information
in a digital description of a surface occurs in the process of sampling

Normally distributed height value

4 £
Figure 5. Generation of a random function
using discrete random variables x
generated on a regular grid.
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Figure 6. Profiles through two sets of simulated surfaces.

the surface by discrete measurements. It 18 a well established fact that the
process of interpolation cannot compensate for this loss of information.

A number of different covariance functions of the type shown in Eq. (6)
were used to study the sensitivity of linear prediction to the choice
of covariance functions, ‘The conclusion drawn from Table 2 is that
linear prediction is not very sensitive to the choice of covariances.
Similarly, the moving average method is not very sensitive to the
choice of weights.

In any application of linear prediction, care must be taken in the
conditioning of matrix Q in Eq. (5). This matrix approaches singularity
if a large number of data points are used. In order to avoid singular-
ity problems, the dimension of Q should not exceed a certain limit. Not
only the dimension of Q but also the cholce of covariance functions can

contribute to 1ll-conditioning of Q, as demonstrated by row 5 of
Table 2.
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Table 1. Results of moving average interpolation of 81 checkpoints
from two sets of measurements. Values are rms discrepancies
between interpolated and given heights in checkpoints, divided

by the rms discrepancy obtained fromblinear interpolation.

Moving Average Method
Set 1 Set 2 Set 1 Set 2 Set 1 Set 2
Weights 1 1 0.8 1 1 0.8
14a* | 1+a® | 1+a® | 14d* | 14db | 144
Results 0.90 0.88 0.92

Table 2. Results of linear prediction of 81 checkpoints from two sets
of measurements. Values are rms discrepancies between interpolated and
given heights checkpoints, divided by the rms discrepancy obtained
from bilinear interpolation. Covariance functions are in the
form shown in eq. (6). All Cl - values are assumed to be 100 m.

Linear Prediction Method __T
Row Ce,-Cr,—Cr Ce..—Cr..—Cr Ce,e" Cs Results
1 0.950 0.800 0.700 0.750 0.85
2 0.950 0.900 0.800 0.850 0.86
3 0.800 0.950 0.700 0.750 0.84
4 0.900 0.900 0.700 0.800 0.92
5 0.900 0.900 0.900 0.900 1,24

*Covariance matrix (eq. 5) 1is near-singular.

The fact that the two sets of measurements are of different accuracy is
reflected in the non-identical covariances C 1» C e The more accurate
measurements have a smaller covariance of measuring errors. It should
be dtressed that, therefore, the overall covariances are also smaller
than the ones of the less accurate measurements. Figure 2 thus shows
that the measurements denoted by (") are more accurate. As shown in
rows 3 and 4 of Table 2, interpolation errors in the case of the parti-
cular simulated data are not distinctly different, even if the covari-
ances are not introduced properly into the linear prediction.

6. CONCLUSIONS

The method of linear least squares interpolation and filtering (linear
prediction) 1s expanded in the present paper to apply to problems of
interpolating a unique surface using two sets of discrete height data.
Kraus (1973) was the first to address the photogrammetric problem of
merging two sets of helght measurements; however, he did so only for the
special case of identical statistical characteristics of the two sets.
The present paper derives an interpolation algorithm valid for
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measurements of different properties. The statistical model includes
correlated and uncorrelated random components in both sets of measure-
ments and the surface itself. A method is presented for computing the
auto- and cross-covariances required as input for linear prediction.

Evaluation of the method of linear prediction with the help of simulated
height measurements led to the conclusion that the accuracy performance
1s about the same as with other interpolation methods. It was further-
more confirmed that in this expansion of linear prediction, too, the
pgrticular choice of covariances for input to the interpolation is not
very critical. Even though the method of linear prediction is not very
sensitive to the covariances used, an interpolation using this method
can only be successful if the dimensions of the covariance matrix among
data points are smaller than about 50 x 50 to avoid near-singularity of
that matrix.

In conclusion, linear prediction in the extension presented is a valuable,
filexible method of interpolation with an overall accuracy performance
similar to other algorithms. But the added advantages typical for linear
prediction, namely, well controllable filtering, statistical significance
of the parameters of the method, and good behavior in areas of low data
point density make the method of linear prediction a tool well suited to
most interpolation problems,

F
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