

How (Not) To Train Your DNN Using The Information Bottleneck Functional

The Authors and Funders

FШF

KNOW

Der Wissenschaftsfonds.

Unterstützt von / Supported by

 \cap

Alexander von Humboldt Stiftung/Foundation

KNOW

iilii

0

a

Setup and Notation

$$Y \longrightarrow X \longrightarrow \begin{bmatrix} encoder \\ f_{\theta} \end{bmatrix} \xrightarrow{L} \begin{bmatrix} decoder \\ h_{\psi} \end{bmatrix} \xrightarrow{decision} \begin{bmatrix} decision \\ rule \end{bmatrix} \longrightarrow \hat{Y}$$

KNOW

▶
$$Y \in \mathcal{Y}$$
, \mathcal{Y} finite set

►
$$X \in \mathbb{R}^N$$

Encoder and decoder are deterministic, e.g.,

$$L_{i+1} = \sigma \left(\mathbb{W}_i^T L_i + b_{i+1} \right)$$

and $\theta = \{ \mathbb{W}_0, \dots, \mathbb{W}_{i-1}, b_1, \dots, b_i \}$

nhi

KNOW

Intermediate representation *L* should

P1 Contain sufficient info for classification (DPI!)

í.

Intermediate representation L should

- P1 Contain sufficient info for classification (DPI!)
- P2 ...but not more info than necessary (compression)

Intermediate representation *L* should

- P1 Contain sufficient info for classification (DPI!)
- P2 ...but not more info than necessary (compression)
- P3 Allow extracting this info easily (w.r.t. decoder)

Intermediate representation L should

- P1 Contain sufficient info for classification (DPI!)
- P2 ...but not more info than necessary (compression)
- P3 Allow extracting this info easily (w.r.t. decoder)
- P4 Be robust to small noise and deformations (generalization)

Intermediate representation L should

- P1 Contain sufficient info for classification (DPI!)
- P2 ...but not more info than necessary (compression)
- P3 Allow extracting this info easily (w.r.t. decoder)
- P4 Be robust to small noise and deformations (generalization)

 $P1 \Leftrightarrow \text{large } I(Y; L)$ $P2 \Leftrightarrow \text{small } I(X; L)$

IB principle for training DNNs¹

$$\min_{\theta} I(X; L) - \beta I(Y; L)$$

KNOW

í.

 $^{^1\}mathsf{T}\mathsf{ishby}$ and Zaslavsky, "Deep learning and the information bottleneck principle", 2015

²Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018

³Alemi et al., "Deep Variational Information Bottleneck", 2017

IB principle for training DNNs¹

$$\min_{\theta} I(X; L) - \beta I(Y; L)$$

Approximations yield^{2,3}

- simple latent representation
- improved generalization
- adversarial robustness

KNOV

taken from [2]

 $^{^1 {\}rm Tishby}$ and Zaslavsky, "Deep learning and the information bottleneck principle", 2015

²Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018

³Alemi et al., "Deep Variational Information Bottleneck", 2017

IB principle for training DNNs¹

$$\min_{\theta} I(X; L) - \beta I(Y; L)$$

- Approximations yield^{2,3}
 - simple latent representation
 - improved generalization
 - adversarial robustness

¹Tishby and Zaslavsky, "Deep learning and the information bottleneck principle", 2015 ²Kolchinsky, Tracey, and Wolpert, *Nonlinear Information Bottleneck*, 2018

³Alemi et al., "Deep Variational Information Bottleneck", 2017

IB principle for training DNNs¹

$$\min_{\theta} I(X; L) - \beta I(Y; L)$$

- Approximations yield^{2,3}
 - simple latent representation
 - improved generalization
 - adversarial robustness

taken from [3]

Do we have $(P1 \land P2) \implies (P3 \land P4)$?

 $^1\mathsf{T}\mathsf{ishby}$ and Zaslavsky, "Deep learning and the information bottleneck principle", 2015

²Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018

³Alemi et al., "Deep Variational Information Bottleneck", 2017

$$\min_{\theta} I(X;L) - \beta I(Y;L)$$

KNOW

▶ Focus on P1 and P2, defined via mutual information

í.

$$\min_{\theta} I(X; L) - \beta I(Y; L)$$

KNOW

▶ Focus on P1 and P2, defined via mutual information

• Computable?

nî,

$$\min_{\theta} I(X; L) - \beta I(Y; L)$$

KNOW

▶ Focus on P1 and P2, defined via mutual information

- Computable?
- Optimizable?

nhi

0

$$\min_{\theta} I(X; L) - \beta I(Y; L)$$

KNOW

▶ Focus on P1 and P2, defined via mutual information

- Computable?
- Optimizable?
- Invariant under bijections

nhi

$$\min_{\theta} I(X; L) - \beta I(Y; L)$$

KNOV

▶ Focus on P1 and P2, defined via mutual information

- Computable?
- Optimizable?
- Invariant under bijections

Focus on the encoder f_{θ} , decoder (P3!) not considered

í.

$$\min_{\theta} I(X; L) - \beta I(Y; L)$$

▶ Focus on P1 and P2, defined via mutual information

- Computable?
- Optimizable?
- Invariant under bijections
- Focus on the encoder f_{θ} , decoder (P3!) not considered
- ▶ (Focus on *L*, architectural simplicity not considered)

íI)

Computability

Theorem

Let X have a PDF f_X that is continuous on $\mathcal{X} \subset \mathbb{R}^N$.

KNOW

iilii

Computability

Theorem

Let X have a PDF f_X that is continuous on $\mathcal{X} \subset \mathbb{R}^N$. Let σ be either bi-Lipschitz or continuously differentiable with strictly positive derivative.

KNOW

nî,

Computability

Theorem

Let X have a PDF f_X that is continuous on $\mathcal{X} \subset \mathbb{R}^N$. Let σ be either bi-Lipschitz or continuously differentiable with strictly positive derivative. Then, for almost every choice of θ , we have

KING

 $I(X; L) = \infty.$

Let X have a discrete distribution \implies IB functional is finite

KNOW

iilii

Let X have a discrete distribution \implies IB functional is finite

KNOV

- \blacktriangleright IB functional is a piecewise constant function of θ
- Cannot use gradient-based optimization techniques

í.

Let X have a discrete distribution \implies IB functional is finite

KNOV

- \blacktriangleright IB functional is a piecewise constant function of θ
- Cannot use gradient-based optimization techniques

íI)

Let X have a discrete distribution \implies IB functional is finite

KNOW

- \blacktriangleright IB functional is a piecewise constant function of θ
- Cannot use gradient-based optimization techniques

í.

Let X have a discrete distribution \implies IB functional is finite

KNOW

- ▶ IB functional is a piecewise constant function of θ
- Cannot use gradient-based optimization techniques

nî,

0

Invariance under Bijections: No P3

KNOW

(iilii

Ω

Invariance under Bijections: No P4

KNOW

(iilii

Ω

IB for Learning Representations – Summary

The IB functional

- is infinite for continuous input
- is piecewise constant in general
- does not encourage "simple" representations (P3)
- does not encourage robust representations (P4)

Why does it work?4,5

⁴Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018
⁵Alemi et al., "Deep Variational Information Bottleneck", 2017

How to Train your DNN (1)

Include decision rule (arg max, softmax, etc.) ⇒ P3
 Compression term may become useless/harmful

nî,

How to Train your DNN (2)

- Train a stochastic
 DNN (e.g., add noise)
- Leads to robustness (P4)
- Encourages geometric clustering⁶ (P2)

⁶Goldfeld et al., Estimating Information Flow in Neural Networks, 2018

nhi

0

How to Train your DNN (3)

From

$$\min_{\theta} I(X; L) - \beta I(Y; L)$$

to, e.g., cross-entropy and variational bounds.

- Replace IB functional by better-behaved cost function
- ▶ E.g., cross-entropy encourages P1 and P3
- Variational bounds may encourage geometric compression P2
- etc.

 $\min_{\theta} I(X; L) - \beta I(Y; L)$

Implemented approximations yield^{7,8,9,10}

- simple latent representation
- improved generalization
- adversarial robustness

⁷Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018

⁸Alemi et al., "Deep Variational Information Bottleneck", 2017

⁹Banerjee and Montufar, The Variational Deficiency Bottleneck, 2018

¹⁰Alemi, Fischer, and Dillon, Uncertainty in the Variational Information Bottleneck, 2018

 $\min_{\theta} I(X; L) - \beta I(Y; L)$

Implemented approximations yield^{7,8,9,10}

- simple latent representation
- improved generalization
- adversarial robustness

It's the approximations that make the IB principle work!

⁷Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018

⁸Alemi et al., "Deep Variational Information Bottleneck", 2017

⁹Banerjee and Montufar, The Variational Deficiency Bottleneck, 2018

¹⁰Alemi, Fischer, and Dillon, Uncertainty in the Variational Information Bottleneck, 2018

Conclusion

 IB principle is insufficient for training latent representations in deterministic DNNs

- infinite
- piecewise constant
- invariant under bijections
- ▶ Remedies available and backed by evidence:
 - enforce geometric (not IT) compression (P2) \implies P3
 - include the decoder \implies P3
 - introduce stochasticity \implies P4

íI)

Conclusion

 IB principle is insufficient for training latent representations in deterministic DNNs

- infinite
- piecewise constant
- invariant under bijections
- ▶ Remedies available and backed by evidence:
 - enforce geometric (not IT) compression (P2) \implies P3
 - include the decoder \implies P3
 - introduce stochasticity \implies P4

Thanks!

ReLU Activation Functions

IB functional is either

- infinite, or
- \blacktriangleright a piecewise constant function of θ

KNOW

(iilii

0