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Neural Network for Classification
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Setup and Notation

encoder
fθ

decoder
hψ

decision
rule ŶXY

L

I Y ∈ Y, Y finite set

I X ∈ RN

I Joint distribution of X ,Y is known

I Encoder and decoder are deterministic, e.g.,

Li+1 = σ
(
WT

i Li + bi+1

)
and θ = {W0, . . . ,Wi−1, b1, . . . , bi}
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Learning Representations for Classification

Intermediate representation L should

P1 Contain sufficient info for classification (DPI!)

P2 ...but not more info than necessary (compression)

P3 Allow extracting this info easily (w.r.t. decoder)

P4 Be robust to small noise and deformations (generalization)

P1⇔ large I (Y ; L)

P2⇔ small I (X ; L)
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IB Principle for Training DNN Classifier

IB principle for training DNNs1

min
θ

I (X ; L)− βI (Y ; L)

Approximations yield2,3

I simple latent
representation

I improved generalization

I adversarial robustness

Do we have (P1 ∧ P2) =⇒ (P3 ∧ P4)?

1Tishby and Zaslavsky, “Deep learning and the information bottleneck principle”, 2015
2Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018
3Alemi et al., “Deep Variational Information Bottleneck”, 2017
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IB Principle for Training DNN Classifier

min
θ

I (X ; L)− βI (Y ; L)

I Focus on P1 and P2, defined via mutual information

• Computable?
• Optimizable?
• Invariant under bijections

I Focus on the encoder fθ, decoder (P3!) not considered

I (Focus on L, architectural simplicity not considered)
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Computability

Theorem

Let X have a PDF fX that is continuous on X ⊂ RN .

Let σ be
either bi-Lipschitz or continuously differentiable with strictly
positive derivative. Then, for almost every choice of θ, we have

I (X ; L) =∞.
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Optimizability

Let X have a discrete distribution =⇒ IB functional is finite

I IB functional is a piecewise constant function of θ

I Cannot use gradient-based optimization techniques

fθ(x)
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Invariance under Bijections: No P3
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Invariance under Bijections: No P4
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IB for Learning Representations – Summary

The IB functional

I is infinite for continuous input

I is piecewise constant in general

I does not encourage “simple” representations (P3)

I does not encourage robust representations (P4)

Why does it work?4,5

4Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018
5Alemi et al., “Deep Variational Information Bottleneck”, 2017
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How to Train your DNN (1)

X1
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Output
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min
θ

I (X ; Ŷ )− βI (Y ; Ŷ )

I Include decision rule (arg max, softmax, etc.) =⇒ P3

I Compression term may become useless/harmful
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How to Train your DNN (2)
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I Train a stochastic
DNN (e.g., add noise)

I Leads to robustness
(P4)

I Encourages geometric
clustering6 (P2)

6Goldfeld et al., Estimating Information Flow in Neural Networks, 2018
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How to Train your DNN (3)

From
min
θ

I (X ; L)− βI (Y ; L)

to, e.g., cross-entropy and variational bounds.

I Replace IB functional by better-behaved cost function

I E.g., cross-entropy encourages P1 and P3

I Variational bounds may encourage geometric compression P2

I etc.

c©Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics 15



IB Principle for Training DNN Classifier

min
θ

I (X ; L)− βI (Y ; L)

Implemented approximations yield7,8,9,10

I simple latent representation

I improved generalization

I adversarial robustness

It’s the approximations that make the IB principle work!

7Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018
8Alemi et al., “Deep Variational Information Bottleneck”, 2017
9Banerjee and Montufar, The Variational Deficiency Bottleneck, 2018

10Alemi, Fischer, and Dillon, Uncertainty in the Variational Information Bottleneck, 2018
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Conclusion

I IB principle is insufficient for training latent representations in
deterministic DNNs

• infinite
• piecewise constant
• invariant under bijections

I Remedies available and backed by evidence:

• enforce geometric (not IT) compression (P2) =⇒ P3
• include the decoder =⇒ P3
• introduce stochasticity =⇒ P4

Thanks!

c©Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics 17



Conclusion

I IB principle is insufficient for training latent representations in
deterministic DNNs

• infinite
• piecewise constant
• invariant under bijections

I Remedies available and backed by evidence:

• enforce geometric (not IT) compression (P2) =⇒ P3
• include the decoder =⇒ P3
• introduce stochasticity =⇒ P4

Thanks!

c©Know-Center GmbH • Research Center for Data-Driven Business and Big Data Analytics 17



ReLU Activation Functions

IB functional is either

I infinite, or

I a piecewise constant function of θ
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