How (Not) To Train Your DNN Using
 The Information Bottleneck Functional

The Authors and Funders

Neural Network for Classification

Setup and Notation

- $Y \in \mathcal{Y}, \mathcal{Y}$ finite set
- $X \in \mathbb{R}^{N}$
- Joint distribution of X, Y is known
- Encoder and decoder are deterministic, e.g.,

$$
L_{i+1}=\sigma\left(\mathbb{W}_{i}^{T} L_{i}+b_{i+1}\right)
$$

and $\theta=\left\{\mathbb{W}_{0}, \ldots, \mathbb{W}_{i-1}, b_{1}, \ldots, b_{i}\right\}$

Learning Representations for Classification

Intermediate representation L should
P1 Contain sufficient info for classification (DPI!)

Learning Representations for Classification

Intermediate representation L should
P1 Contain sufficient info for classification (DPI!)
P2 ...but not more info than necessary (compression)

Learning Representations for Classification

Intermediate representation L should
P1 Contain sufficient info for classification (DPI!)
P2 ...but not more info than necessary (compression)
P3 Allow extracting this info easily (w.r.t. decoder)

Learning Representations for Classification

Intermediate representation L should
P1 Contain sufficient info for classification (DPI!)
P2 ...but not more info than necessary (compression)
P3 Allow extracting this info easily (w.r.t. decoder)
P4 Be robust to small noise and deformations (generalization)

Learning Representations for Classification

Intermediate representation L should
P1 Contain sufficient info for classification (DPI!)
P2 ...but not more info than necessary (compression)
P3 Allow extracting this info easily (w.r.t. decoder)
P4 Be robust to small noise and deformations (generalization)

$$
\begin{aligned}
& \mathrm{P} 1 \Leftrightarrow \operatorname{large} I(Y ; L) \\
& \mathrm{P} 2 \Leftrightarrow \text { small } I(X ; L)
\end{aligned}
$$

IB Principle for Training DNN Classifier
IB principle for training DNNs ${ }^{1}$

$$
\min _{\theta} I(X ; L)-\beta I(Y ; L)
$$

[^0]
IB Principle for Training DNN Classifier
 IB principle for training DNNs ${ }^{1}$

$$
\min _{\theta} I(X ; L)-\beta I(Y ; L)
$$

Approximations yield ${ }^{2,3}$

- simple latent representation
- improved generalization
- adversarial robustness

taken from [2]

[^1]
IB Principle for Training DNN Classifier
 IB principle for training DNNs ${ }^{1}$

$$
\min _{\theta} I(X ; L)-\beta I(Y ; L)
$$

Approximations yield ${ }^{2,3}$

- simple latent representation
- improved generalization
- adversarial robustness

[^2]
IB Principle for Training DNN Classifier
 IB principle for training DNNs ${ }^{1}$

$$
\min _{\theta} I(X ; L)-\beta l(Y ; L)
$$

Approximations yield ${ }^{2,3}$

- simple latent representation
- improved generalization
- adversarial robustness

taken from [3]

$$
\text { Do we have }(P 1 \wedge P 2) \Longrightarrow(P 3 \wedge P 4) \text { ? }
$$

[^3]
IB Principle for Training DNN Classifier

$$
\min _{\theta} I(X ; L)-\beta I(Y ; L)
$$

- Focus on P1 and P2, defined via mutual information

IB Principle for Training DNN Classifier

$$
\min _{\theta} I(X ; L)-\beta I(Y ; L)
$$

- Focus on P1 and P2, defined via mutual information
- Computable?

IB Principle for Training DNN Classifier

$$
\min _{\theta} I(X ; L)-\beta I(Y ; L)
$$

- Focus on P1 and P2, defined via mutual information
- Computable?
- Optimizable?

IB Principle for Training DNN Classifier

$$
\min _{\theta} I(X ; L)-\beta I(Y ; L)
$$

- Focus on P1 and P2, defined via mutual information
- Computable?
- Optimizable?
- Invariant under bijections

IB Principle for Training DNN Classifier

$$
\min _{\theta} I(X ; L)-\beta I(Y ; L)
$$

- Focus on P1 and P2, defined via mutual information
- Computable?
- Optimizable?
- Invariant under bijections
- Focus on the encoder f_{θ}, decoder (P3!) not considered

IB Principle for Training DNN Classifier

$$
\min _{\theta} I(X ; L)-\beta I(Y ; L)
$$

- Focus on P1 and P2, defined via mutual information
- Computable?
- Optimizable?
- Invariant under bijections
- Focus on the encoder f_{θ}, decoder (P3!) not considered
- (Focus on L, architectural simplicity not considered)

Center
Computability

Theorem

Let X have a PDF f_{X} that is continuous on $\mathcal{X} \subset \mathbb{R}^{N}$.

Center

Computability

Theorem

Let X have a PDF f_{X} that is continuous on $\mathcal{X} \subset \mathbb{R}^{N}$. Let σ be either bi-Lipschitz or continuously differentiable with strictly positive derivative.

Computability

Theorem

Let X have a PDF f_{X} that is continuous on $\mathcal{X} \subset \mathbb{R}^{N}$. Let σ be either bi-Lipschitz or continuously differentiable with strictly positive derivative. Then, for almost every choice of θ, we have

$$
I(X ; L)=\infty .
$$

Center

Optimizability

Let X have a discrete distribution \Longrightarrow IB functional is finite

Optimizability

Let X have a discrete distribution \Longrightarrow IB functional is finite

- IB functional is a piecewise constant function of θ
- Cannot use gradient-based optimization techniques

Optimizability

Let X have a discrete distribution \Longrightarrow IB functional is finite

- IB functional is a piecewise constant function of θ
- Cannot use gradient-based optimization techniques

Optimizability

Let X have a discrete distribution \Longrightarrow IB functional is finite

- IB functional is a piecewise constant function of θ
- Cannot use gradient-based optimization techniques

Optimizability

Let X have a discrete distribution \Longrightarrow IB functional is finite

- IB functional is a piecewise constant function of θ
- Cannot use gradient-based optimization techniques

Invariance under Bijections: No P3

Invariance under Bijections: No P4

IB for Learning Representations - Summary

The IB functional

- is infinite for continuous input
- is piecewise constant in general
- does not encourage "simple" representations (P3)
- does not encourage robust representations (P4)

Why does it work? ${ }^{4,5}$

[^4]
How to Train your DNN (1)

$$
\min _{\theta} I(X ; \hat{Y})-\beta I(Y ; \hat{Y})
$$

- Include decision rule (arg max, softmax, etc.) \Longrightarrow P3
- Compression term may become useless/harmful

How to Train your DNN (2)

- Train a stochastic DNN (e.g., add noise)
- Leads to robustness (P4)
- Encourages geometric clustering ${ }^{6}$ (P2)

[^5]
How to Train your DNN (3)

From

$$
\min _{\theta} I(X ; L)-\beta I(Y ; L)
$$

to, e.g., cross-entropy and variational bounds.

- Replace IB functional by better-behaved cost function
- E.g., cross-entropy encourages P1 and P3
- Variational bounds may encourage geometric compression P2
- etc.

IB Principle for Training DNN Classifier

$$
\min _{\theta} I(X ; L)-\beta I(Y ; L)
$$

Implemented approximations yield ${ }^{7,8,9,10}$

- simple latent representation
- improved generalization
- adversarial robustness

[^6]
IB Principle for Training DNN Classifier

$$
\min _{\theta} I(X ; L)-\beta I(Y ; L)
$$

Implemented approximations yield ${ }^{7,8,9,10}$

- simple latent representation
- improved generalization
- adversarial robustness

It's the approximations that make the IB principle work!

[^7]
Conclusion

- IB principle is insufficient for training latent representations in deterministic DNNs
- infinite
- piecewise constant
- invariant under bijections
- Remedies available and backed by evidence:
- enforce geometric (not IT) compression (P2) \Longrightarrow P3
- include the decoder $\Longrightarrow P 3$
- introduce stochasticity $\Longrightarrow \mathrm{P} 4$

Conclusion

- IB principle is insufficient for training latent representations in deterministic DNNs
- infinite
- piecewise constant
- invariant under bijections
- Remedies available and backed by evidence:
- enforce geometric (not IT) compression (P2) $\Longrightarrow P 3$
- include the decoder $\Longrightarrow P 3$
- introduce stochasticity $\Longrightarrow \mathrm{P} 4$

Thanks!

ReLU Activation Functions

IB functional is either

- infinite, or
- a piecewise constant function of θ

[^0]: ${ }^{1}$ Tishby and Zaslavsky, "Deep learning and the information bottleneck principle", 2015
 ${ }^{2}$ Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018
 ${ }^{3}$ Alemi et al., "Deep Variational Information Bottleneck", 2017

[^1]: ${ }^{1}$ Tishby and Zaslavsky, "Deep learning and the information bottleneck principle", 2015
 ${ }^{2}$ Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018
 ${ }^{3}$ Alemi et al., "Deep Variational Information Bottleneck", 2017

[^2]: ${ }^{1}$ Tishby and Zaslavsky, "Deep learning and the information bottleneck principle", 2015
 ${ }^{2}$ Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018
 ${ }^{3}$ Alemi et al., "Deep Variational Information Bottleneck", 2017

[^3]: ${ }^{1}$ Tishby and Zaslavsky, "Deep learning and the information bottleneck principle", 2015
 ${ }^{2}$ Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018
 ${ }^{3}$ Alemi et al., "Deep Variational Information Bottleneck", 2017

[^4]: ${ }^{4}$ Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018
 ${ }^{5}$ Alemi et al., "Deep Variational Information Bottleneck", 2017

[^5]: ${ }^{6}$ Goldfeld et al., Estimating Information Flow in Neural Networks, 2018

[^6]: ${ }^{7}$ Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018
 ${ }^{8}$ Alemi et al., "Deep Variational Information Bottleneck", 2017
 ${ }^{9}$ Banerjee and Montufar, The Variational Deficiency Bottleneck, 2018
 ${ }^{10}$ Alemi, Fischer, and Dillon, Uncertainty in the Variational Information Bottleneck, 2018

[^7]: ${ }^{7}$ Kolchinsky, Tracey, and Wolpert, Nonlinear Information Bottleneck, 2018
 ${ }^{8}$ Alemi et al., "Deep Variational Information Bottleneck", 2017
 ${ }^{9}$ Banerjee and Montufar, The Variational Deficiency Bottleneck, 2018
 ${ }^{10}$ Alemi, Fischer, and Dillon, Uncertainty in the Variational Information Bottleneck, 2018

