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Automated radar image matching experiment

Stereo-parallax measurements for digital elevation extraction, matching for change detection, and creation of stacks of
multi-temporal or multi-incidence angle images (“cubes”) of co-registered images all can be supported by automation via
computerized image correlation. Precision parallax measurements are traditionally made by an experienced stereo-operator.
Automated methods have been investigated, but have not found wide acceptance.

Radar mapping, for example in NASA’s Magellan mission to planet Venus, has a requirement to develop Digital
Elevation Models (DEM) from stereo radar images, and to match multiple coverages from sequential image acquisition
cycles. We report on an experiment to assess the quality of machine-matches for stereo-parallax detection in radar images,
and find that there are often +2 pixel differences between the experienced stereo-operator and the best image-matching
method, based on a normalized cross-correlation measure. When comparing this to SPOT-images and to scanned aerial
photography, we note that errors of machine matching are typically smaller in those images than in radar images, with
SPOT data producing automated matches with subpixel differences to manual matches.

1. Introduction

In order to assess the quality and computa-
tional cost of computerized stereo image matching,
we performed a set of experiments in support of
radar mapping studies. We are motivated by the
plan to develop a large number of image matches
for about 1800 radar image pairs of planet Venus
acquired during the nominal Magellan mission of
NASA from 15 September 1990 to 16 May 1991,
and during the extension of that mission. Each
image pair covers 25 km x 20,000 km or 350 x
250,000 pixels, reaching nearly from pole to pole.
With a spacing of the matches at five pixels this
would result in three million matches per image
pair, and up to five billion matches in total. If done
manually at a rate of 3 s per point, this would take
2000 man-years.

The same concerns apply to satellite radar
images of the Earth, for example with Canada’s
Radarsat, Europe’s E-ERS-1 or Japan’s J-ERS-

'VEXCEL Corporation, Boulder, Colo., USA. Currently also
at: Graz University of Technology, A-8010 Graz, Austria.

2VEXCEL Corporation, Boulder, Colo., USA.

3VEXCEL Corporation, Boulder, Colo., USA. Currently also
at: Electrical Engineering Department, University of Col-
orado, Boulder, Colo., USA.

4VEXCEL Corporation, Boulder, Colo., USA. Present ad-
dress: 110 Rue Lavoisier, F-78140 Velizy, France.

ISPRS Journal of Photogrammetry and Remote Sensing, 49(3): 19-33

1, or with other imaging sensors. Unless parallax
measurements are made automatically, rapidly and
without blunders, a global DEM is not feasible.
It is thus of interest to develop experiences with
matching of radar images.

There is only little work reported in the radar
literature, except on data from the Space Shuttle
SIR-B experiment (e.g. Ramapriyan et al., 1986;
Simard et al., 1986; Fernin and Nasr, 1990). Some
work has been reported in the area of regis-
tration of a radar image with a simulated data
set for ground control detection (Guindon and
Maruyama, 1986; Guindon, 1987).

While stereo matching is a lively research topic
with non-radar images, our study aims at iden-
tifying the robustness and accuracy of machine-
matching two radar images, using current and
customary matching algorithms. We abstain from
the identification of new and previously unknown
methods of matching.

Fig. 1 presents a typical stereo-pair of radar
images taken by the Magellan spacecraft during a
short one-day stereo-experiment in July 1991. This
indicates that slopes facing the radar antenna are
compressed, or foreshortened, into rather narrow
image regions. At slope angles of 25° one may well
find a manifestation in the radar image of a slope in
a mere 2 pixels or 150 m, even though the terrain
features extend over several kilometers (Fig. 2).

0924-2716/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved.
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Figure 1. Example of Magellan radar images (36 km wide x 30 km long) at 8°S, 75°E for two different radar look angles off-nadir
and for two types of terrain. (a) Cycle 1 at 40° off-nadir, looking east (smooth terrain). (b) Cycle 2 at 21° off-nadir, looking
east (smooth terrain). (c) Cycle 1 at 40° off-nadir, looking east (rough terrain). (d) Cycle 2 at 21° off-nadir, looking east (rough
terrain). Note that certain terrain shapes are compressed in these east-looking images.

This is the reason that image measurements of
parallaxes must be obtained both near the base
as well as near the top of the slope, resulting in
a requirement for rather densely spaced match
points at an interval of perhaps 5 pixels.

We report here on the assessment of stereo-
matching accuracy in a comparison between an
experienced human stereo-operator and five often-
used image-matching algorithms. These algorithms

were applied to Magellan stereo radar test data.
To develop an understanding for the technology,
we also applied the methods to other sensors, as
summarized in Table 1. The human operator put a
stereo measuring mark on the ground to serve: (a)
as a reference match, and (b) as a “predictor” for
the automated matches.

The automated methods were applied to the
window around the points observed by the oper-
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Table 1

Test data set for the stereo-matching experiment

Radar images Pixel size  Look-angle Look-angle Intersection Typical stereo parallax Comments
(m) off-nadir 6’ oft-nadir 6” angle A9 for terrain elevation
) ) ) h =100m
Magellan radar, Set 1 75 40 21 19 140 m 2°S, 15°E
Magellan radar, Set2 75 25 14 11 187 m 39°S, 79°E
Magellan radar, Set 3 75 15 11 4 141 m 59°S, 86°E
Aircraft radar 6 73 55 18 39 m Brazeau, Canada
SPOT stereo images 20 2 27 25 47 m Boulder, Colorado
Pixel size  Flying height Photo scale Base-to-height  Sterco parallax
(m) (m) ratio for terrain A = 100 m
Digitized National
Aerial Photography
Program (NAPP) 2 6000 1:40,000 0.6 60 m Boulder, Colorado
/_ 2. Matching algorithms
\ , .
O 2.1. Overall matching strategies
N . . .
Vo Image matching needs to be accomplished in an
\ \ established sequence of events as illustrated in Fig.
\ 3. A candidate match area needs to be identified in
\ e . :
\ a “prediction step”, and a specific match-method
\ \ is applied. This may lead to the need of refin-
\ reference datum ing a match, say to a sub-pixel accuracy. Finall
\ g y P y y,
\ \ each match must be examined and accepted or

projected ground-range
image of front slope of
feature

Figure 2. Compression of terrain sloping towards the antenna
is denoted as “foreshortening” in radar images.

ator. Any differences between the match points
found by the operator and by machine were
recorded and are reported in this paper.

We found that automated matching in radar
images consistently produced matches with a mean
offset of 0.5 to 1.5 pixels from the human’s mea-
surement, and with a standard deviation often in
excess of £2 pixels. We find that these errors are
smaller if SPOT images or digitized aerial pho-
tographs are used.

PREDICTION

MATCHING

Figure 3. Overall sequence of steps in image-matching meth-
ods.
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rejected. Many matching procedures operate itera-
tively, starting at a coarse geometric resolution and
refining the result by using finer resolutions (Li,
1991). In essence they work on resolution pyra-
mids and are denoted as “hierarchical” methods.
Or they use coarse matches to remove geomet-
ric disparities between images in a process called
iterative orthorectification (IOR, Norvelle, 1992b).

The actual matching function is the often-
discussed core element of a system, but the success
of any system depends on the implementation of
all steps of the process, not just the core matching
method.

2.2. Method description

An enormous body of work exists on image
matching. We selected five methods for analy-
sis that are all intensity-based. Radar images do
not promise clear edge information, and therefore
edge- or feature-based methods were not consid-
ered. All matching techniques operate on a refer-
ence and search window of image gray values, with
x denoting the M x M array of gray values in the
reference, and y the gray values in the search win-
dow of dimension N x N where N > M (§ =

Reference Window

MxM
| IMAGE ! N-M pixels over
IMAGE 2

Search Window N-M pixels down

NxN Maximum
Correlation
Coefficient

N-M pixels over
—_—

Figure 4. For each position of the search window, a match
value is computed. A match is accomplished if the match
value at a certain position of the search window has a local
maximum when compared with match values at all other
positions of the search window.

N — M). The search window is moved over the ref-
erence, and a match value is computed for each of
the (S + 1) x (S + 1) positions. A best match is
obtained by sorting through the match values (see
Fig. 4).

2.2.1. Use of normalized correlation (CORREL)
This is often considered to be the most accurate
matching method, but at the expense of computing
effort. It has been widely discussed, from the early
days of image processing, and many computational
implementations have been proposed, for example
by Anuta (1970). In the current experiment we use:

rij __ E[ -0 -Y)]

C= max = —
1<ijs(N-M+1)  JE[(x = X)2]E[(y — ¥)?]
M
(Z -’~'k.!}';‘+k.j+f) /M
_ Oxy k=1
T o0y 00y
where:

M
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M
o=y (Yi+k,j+l)2] - (My)?
Lk.l=1
Here r; ; is the correlation coefficient at location
i, j in the search window, xi;, yiqk 4 are the
gray values in a reference (master) and search
(slave) window and X, y are the means of the
gray values in each reference and search window
overlap. E[...] is the “expected value”. The match
point is found as the local maximum of r as r
is computed for various positions of the search
window on the reference window. This method
is preferred if computational cost is not an issue
(Crombie and Bosch, 1986). It tends to be slightly
more accurate than MNAD below (Svedlow et al.,
1978).

2.2.2. Sum of mean normalized absolute differences
(MNAD)

This method is similar to normalized correla-
tions in terms of match performance, but requires
less computations. One searches for the minimum
value of s:

s=E[lx=%)—(y-Ml
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With radar images, a variant on this approach was
used in the SIR-B Space Shuttle experiment by
Ramapriyan et al. (1986).

2.2.3. Sum of mean normalized squared differences
(SQUARE)

This method implements a least-squares fit that
minimizes the squares of the gray-level differences
between images (Rosenholm, 1987):

s=E[x-% - -

2.2.4. Stochastic sign change (S§5C)

This method represents an estimator that uses
the integer set criterion of sign changes in subtrac-
tion image sequence values. It relies (Herbin et al.,
1989) on the presence of noise in the imagery. The
implemented version of this algorithm removes the
mean from each window intensity to account for a
potential offset between the images. It should be
noted that the differences are scanned first along
the columns.

2.2.5. Outlier minimal number estimator (OMNE)

Also an integer criterion method, similar to
SSC, the OMNE is a membership set estimator
that utilizes an uncertainty interval for each pixel
(Herbin et al., 1989). This method works well for
dissimilar images. This method requires an interval
parameter.

2.3. Discussion

Just like in interpolation algorithms, image-
matching methods exist in great numbers. Each
technique is the result of a specific requirement
and may be optimal for a narrow set of constraints.
These may be the need for computational speed,
robustness against image noise, absence of edges,
etc.

3. Test data

Matching results may vary with specific imaging
parameters. To develop an understanding of the re-
lationships between accuracy and imaging parame-
ters, data sets are required that use images taken
under different configurations. Therefore, we rely
on various images as listed in Table 1. The three
Magellan stereo-pairs are shown in Figs. 1, 5 and 6.
They differ in look-angle geometry. Magellan’s or-
bit is elliptical and the radar illumination therefore

needs to change from 42° at periapsis to 11° near
the pole (Leberl et al., 1992). The stereo partner is
created with look angles of 21° at periapsis and 8°
near the pole.

The effect of radar resolution is studied by
using aircraft data. We employ a stereo-pair pro-
duced by Intera Ltd. with its STAR-1 synthetic
aperture radar (Fig. 7). We aim at defining errors
of machine-matching as they relate to the ability
of an experienced human operator. Since we want
to express errors in a dimensionless way, we report
them in “pixels”. To compare radar to conventional
images, we apply the experimental set-up to non-
radar images as well, namely SPOT images (Fig. 8)
and digitized aerial photography over a region in
Colorado with both mountains and flat areas (Fig.
9).

The analysis will separate the results into those
for flat and mountainous areas. The sub-areas for
these two classes of terrain are shown in the re-
spective figures.

4. Experiment set-up

Fig. 10 explains the experiment. A human oper-
ator manually determines the best match between
two images. Several hundred matches are set up
for each image pair, and for each region selected
for study from each pair. These image coordinates
represent a file of known match points x}, y., x2,
v in the left () and right images (”).

The “known” match points are now used as a
“prediction” for an automated matching algorithm.
A reference and a search window with M x M and
N x N pixels are selected around the predicted
pixel locations. The search window is moved into
(N—-M+1)x (N —M +1) positions and a corre-
lation value is computed in each position. A “best”
correlation match is defined and recorded as x,
y(/), x//, y//.

The manually observed and automatically com-
puted positions are compared as follows:

Ax =x" —x

Ay =y"—y}

with Ax, Ay considered to be “errors” of the
matching process. These are subject to an error
analysis. For each image segment one will obtain
several hundred Ax, Ay values.
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Figure 5. Magellan stereo image pair (53 km wide x 53 km long) at 39°S 79°E with look-angle geometry of 8’ = 25°, 8" = 14°, Af
= 11° (a) Cycle 1 (smooth); (b) cycle 2 (smooth); (c) cycle 1 (rough); (d) cycle 2 (rough).

These will be further dependent on spe-
cific choices in the matching method and se-
lection of parameters within each method. Of
particular interest is the size of the search win-
dow, N, and the number. of positions over
which the maximum match value is determined,
[(N-M+1DN-M+ 1]

5. Results and discussion

5.1. Accuracy variations in different sensors and
terrain types

Table 2 presents a summary of the mean and
standard deviation of the error values in the radar
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Figure 6. Magellan stereo image pair (53 km wide x 53 km long) at 59°S 86°E with look-angle geometry of 8/ = 15° 6" = 11°, A8
= 4° (a) Cycle 1 (smooth); (b) cycle 2 (smooth); (c) cycle 1 (rough); (d) cycle 2 (rough).

range direction, which are the relevant errors for K
. . 2
elevation computation. E (Ax; — Axmean)

i=1
K
5o
i=1

AXmean = K K is the number of points observed manually. The

OAx = K —1
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Figure 7. Aircraft radar image pair with 6 m pixels at look angles off-nadir of 71.5° < 6’ < 75.3°, 50.5° < 6" < 63° with
intersection angles of A§ = 21° at near range and Af = 12° at far range. The area is roughly 16 km?. (Courtesy Intera
Technologies Ltd.)

N d.
Figure 8. SPOT image pairs (copyright CNES 1992) with pixels at 20 m over Boulder, Colorado (see Table 1). (a) 2° off-vertical

(smooth) (7.2 km wide x 3.9 km long). (b) 27° off-vertical (smooth) (7.2 km wide x 3.9 km long). (c) 2° off-vertical (rough)
(7.9 km wide x 4.5 km long). (d) 27° off-vertical (rough) (7.9 km wide x 4.5 km long).
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Figure 9. Digitized aerial photography over Boulder, Colorado, with base-to-leight ratio of 0.6 (see Table 1): (a), (b) smooth
terrain (640 m wide x 570 m long); (c), (d) rough terrain (700 m wide x 450 m long).

Table 2

Machine match versus manual match in range direction (in x), expressed in pixels, using normalized correlation coefficient

Area Intersection ~ Number of points ~ Window  Smooth % “Bad” Rugged %“Bad”
(Figure) size M mean o (>1 pixel) mean o

1 8°S 19° 340 (smooth) 10 0.7 29 93 0.7 23 9
330 (rugged) 20 0.8 26 86 0.6 1.8 &4
40 0.8 22 76 0.5 1.6 85
5 39°S 11° 225 (smooth) 10 0.7 29 87 0.6 2.8 86
222 (rugged) 20 0.4 23 N 0.8 23 69
40 0.6 1.5 50 0.5 1.6 o6t
6 59°S 4° 225 (smooth) 10 0.1 28 88 0.3 27 82
225 (rugged) 20 03 25 83 0.4 23 72
40 0.0 19 75 0.0 1.8 53
7 Intera 18° 800 (varied 10 -0.4 19 48 - - -
Star-1 terrain) 20 -0.6 1.1 26 - - -
40 —0.5 1.0 12 - - -
8 SPOT 25° 350 (smooth) 10 0.3 1117 0.2 0.8 17
432 (rugged) 20 0.3 0.7 7 0.2 07 18
40 0.3 0.5 5 0.4 1.1 33
9 NHAP  33° 440 (smooth) 10 0.3 16 40 0.2 1.9 59
367 (rugged) 20 0.4 06 13 0.2 22 68
' 40 05 04 9 0.3 28 78

A match point is classified as “bad” if it differs by more than one pixel from the match defined by the experienced stereo operator.
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Figure 10. Definition of the matching experiment.

values of M are chosen to be fairly large when
compared to work done with photography, and are
at 10, 20 and 40 pixels; only the normalized corre-
lation coefficient is used for this table. In this study,
by fixing S to be 10, the maximum discrepancy al-
lowed between operator and machine is 5 pixels.
We selected values of M that are large because we
were concerned about the effect of speckle noise
and of illumination differences.

We found that the Magellan data mislead auto-
mated matching into a match point which deviates
by about +£2 pixels from the manually obtained
value. This error remains about the same, irre-
spective of the look angles off-nadir and of the
look-angle disparities. It is to be noted that the
human observer is very consistent and will point
to a match point with an uncertainty of only +0.6
pixels. This has been determined by repeat ob-
servations of the same image points, where the
repetitions are spaced one day apart.

In a different radar sensor carried in an aircraft,
the matching errors are slightly smaller due prob-

ably to a better signal-to-noise ratio, although the
pixels are much smaller than in Magellan. However,
when one studies SPOT images, one can conclude
that the matching errors are at £0.7 pixels, both in
rolling and in steeply mountainous terrains.

In digitized aerial photography the relevant
discrepancies between an experienced operator
and a machine-matching method amount to less
than £0.5 pixel for smooth, and more than 2 pix-
els for extremely rugged terrain. Note the steep
Flatirons rock formation of Boulder, Colorado
which leads the matching algorithm to larger er-
rors. One may expect that these errors would be
reduced with an iterative orthorectification as pro-
posed by Schenk et al. (1990) and demonstrated by
Norvelle (1992b).

5.2. Accuracy variations as a function of matching
methods

Fig. 11 plots the standard deviations between
manual and automated matching as a function of
the reference area (M x M), using a fixed value of
N — M= 10. The area used was Fig. 5 (rugged). We
find the expected result, namely that the normal-
ized correlation coefficient, r, produces the match
points closest to the manual selection. This con-
clusion generally applies at all window sizes and
all data sets. For the sake of brevity we do not
report the extensive computations which verify the
validity of this conclusion.

5.3. How many errors are larger than one pixel?

In Fig. 12 we present the percentage of obser-
vations that do not exceed a one pixel difference
in both x and y between manual and automated
matching for various window sizes. In all Magellan
data we find that errors exceed 1 pixel at least 50%
of the time. The accuracy increases to a maximum
around a reference window size of 40.

The same presentation, when applied to differ-
ent image types, leads to the conclusion that with
SPOT, this percentage is <10% for > 1 pixel; it
is <15% in aerial photography. In mountainous
and flat areas, the percentages differ with smaller
errors in flat areas.

An operator examining the automated matches
will want to correct this percentage of erroncous
matches since the surface visibly deviates from that
defined by machine.
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Figure 11. Comparing matching methods by plotting o for each reference window size (M) of the match surface, for the stereo

model in Figs. 5c and 5d (39°S).

5.4. The effect of inaccurate predictions

So far the Ax-values were reported as defined
by the best available manual match points. If one
modifies the manual match by several pixels, then
the search window encompasses different pixels
than previously used (see Fig. 10). As a result one
may find a shift from the result of the automated
matches.

In general the effect of falsifying the predictor
is seen as being similar to increasing the size of the
search window. We plan to study this effect (Figs.
11, 12) and hypothesize that the match perfor-
mance again peaks around a window size of 40 at
which point mismatches increase and performance
begins to decline.

5.5. Hllustrating digital elevation models from
manual and automated matches

The pair of Magellan images from an area near
that in Fig. 1 was subjected to the creation of
a Digital Elevation Model (DEM) as described
by Leberl et al. (1992). This implies that the
match points be converted to stereo-parallaxes p
or, preferably, to stereo-parallax differences Ap:

App = (xp — xp) — (X3 — Xn)

This means that one terrain point, A, is selected
as a datum point and all other points, P, get their
parallax defined with respect to A. The parallax
differences, Ap, are then converted to terrain ele-
vation differences, A#, as follows:

1 1
={— - — A
Ah (tan@’ tanG”) *op
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Figure 12. Percentage of match errors Ax which do not exceed one pixel from Fig. 5 (rugged).

with 6, 68" being the look angles off-nadir of the
Magellan images.

The individual Ah-values are associated with
each of the x’, y’ observations in the left Magellan
image. A DEM is now produced by shifting the x’
coordinate by dx to correct the image position for
the effect of the terrain elevation:

x=x"+dx =x"+htané’

The resulting points at (x, ¥, k) are input to a
gridding algorithm that creates a square-grid DEM
and contour lines.

Applying this process to the images in Fig. 13,
using both the manually found match points and
the machine matches, results in the DEMs in Fig.
14 and the difference DEM in Fig. 15.

The automated matching process applied in
the DEM is based on the normalized correlation
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Figure 14. Digital elevation models produced by hand (left), and produced from automated machine matches (right), for the stereo
model in Fig. 1. Differences have a standard deviation of 100 m. The terrain elevations from lowest to highest point are 2.6 km.

coefficient implemented within an algorithm that
employs so-called “window-shaping” to improve
the matching quality (Norvelle, 1992a). It should
be noted that the automated method still requires
manual acquisition of one row and one column
of match points by an operator to kick-off the
process.

The differences between manual and auto-
mated DEM creation are noisy with a standard
deviation of o5 = £100 m. We also find a mean
error dhmean Of measuring parallaxes which is not
relevant in the current study since all coordinates

are measured in local systems. The £100 m error is
consistent with the expected £2 pixel parallax dis-
crepancy between manual and machine-observed
parallaxes: 2 pixels represent 150 m in parallax,
converting to a 100 m height error. The auto-
mated matching process produces matching errors
which result in elevations with a random elevation
component. A low-pass filter can reduce this error
and will eliminate the random error component.
It cannot, however, produce the DEM at an ac-
curacy equal to that obtained by an experienced
stereo-operator.
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Figure 15. Difference DEM produced by taking the absolute
values of the differences in height at each point of the two
DEMs in Fig. 14. The r.m.s. difference is £100 m. Note the
high frequency of the errors.

6. Conclusions and outlook

We have quantified the expected errors of
machine matches in Magellan radar images. We
applied conventional matching techniques that
lend themselves to implementation in a massive
global DEM-effort for planet Venus. We compared
machine matches with those of an experienced
photogrammetric stereo-operator. We have found
these errors to be £2 pixels, confirming accuracy
statements reported in the literature (e.g. Simard
et al., 1986). We have also shown that radar match-
ing errors are larger than those in SPOT images or
digitized aerial photography.

We can speculate that errors are larger due
to radar speckle noise and the illumination differ-
ences inherent in stereo radar images, but absent
in SPOT and aerial photography. We studied the
size of matching errors as they depend on match-
ing algorithms, on types of terrain and on the size
of the window used to compute a match. The re-
sults are all expressed in terms of “pixels”, thereby
eliminating the issue of scale. However, for one
example we produced a full DEM by hand and via
automated matches. This illustrated the random
character of the match errors and permitted one to
quantify the DEM elevation differences (between
manual and machine results) at £100 m.

As one wishes to automate image matches, one
needs to be aware of the limitations of matching

algorithms. Improvements can be attempted by
accounting for the differences in the two images.
An example is the use of the DEM to orthorectify
the two input images and rematch them. If the
DEM were error-free, then the two orthorectified
images would match. Any mismatches can be used
to refine the DEM.

One may argue that area-based matching ig-
nores the “push-broom”-like geometry of kine-
matic SAR image sensing. This may indeed serve
to reduce the computational effort in each match
by searching for the match point along a line of
constant azimuth. We do not expect, however, an
increase in accuracy.

We assume that the major factors in defin-
ing matching accuracy are the geometric and ra-
diometric differences among overlapping images.
Therefore one may wish to devise an iterative
matching strategy that accounts for geometric dif-
ferences through geometric warping and radiomet-
ric differences by shape-from-shading.

One might also employ a matching model
which includes the gray values as a function of
terrain slope in a simultaneous adjustment. The
study of the potential for improvement from such
refinements must be the subject of future work.
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