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INTRODUCTION

The combination of terrestrial data and satellite-derived global models can be interpreted in two ways:
1) The incorporation of satellite-related data from the dedicated gravity field missions CHAMP and GRACE (and in the future GOCE) into local and regional geoid
solutions will stabilize and thus considerably improve them, particularly conceming its medium and long wavelength content and by reducing systematic effects

such as biases and ilts.

2) Global satellite-only models are complemented by local data in order to improve the spatial resolution of the global model, or to reduce specific weaknesses
of the global models, e.g., the polar data gaps of global models derived from the satellite mission GOCE.

In this poster several adaptations of the Least Squares Collocation (LSC) method to compute an optimum joint solution from local (terrestrial) and global data shall
be presented, with special emphasis on the involved functional and stochastic models, and the choice of a consistent covariance function.

A COLLOCATION SOLUTION TO COMBINE

In order to predict any gravity field functional z, the optimal linear combination
between a set of spherical harmonic coefficients s, and local observations
such as gravity anomalies Ag, can be formulated by LSC as:
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- K is the diagonal covariance matrix of the spherical harmonic coefficients,
depending only on the degree variances (fruncated at a maximum degree),
- 3sisthe generally full error covariance matrix of the global model,

- Cijis the signal (cross) covariance matrix between the functionals i andj,

- Disthe noise covariance matrix of the local observations.

z= }"Tso +PTAg0 = [Cz,s

GLOBAL AND LOCAL GRAVITY DATA

Due to large correlations among the local p and global A components, this
approach fails in practical application. On the other hand, the same solution
can be written in a more convenient way by exploiting the consistency
among the covariance functions of the involved gravity field functionals. The
normal equations related to Eq. (1) read:
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where B: are the base functions related to the gravity field functional i. Solving
Eq. (2) with respect to A and inserting the result info Eq. (3) yields the normal
equations of pinthe reduced form:
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IMPROVEMENT OF LOCAL GEOID

In this case the functional z to be predicted is the geoid height N. An extended
remove-restore strategy, which also includes a correct error description of the
global component, is formulated. The coefficients p are derived from Eq. (4)
and then the final estimate of the geoid height reads:
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g:é;g NUMERICAL CASE STUDY

TEST DATA ENVIRONMENT

* Simulated gravity anomalies Ag, based on a global
gravity field model complete to D/O 1800, defined
at 5796 iregularly distributed stations in Austria and
its neighbourhood, superposed by random noise
with 6ag =1 mgal (Fig. 1).

*Spherical harmonic coefficients s, of the same
global model complete to D/O 80, together with a
realistic full covariance matrix Zs.

Fig.1: Grav. anom. Ag [mGal]
at 5798 stations (black dots).

SIMULATION RESULTS

Fig. 2 shows the resulting geoid height differences (leff) and error estimates
(ight) of the local-only solution based on the Ag data, while Fig. 3 illustrates the
solution based on global and local data, where the error estimation includes a
correct propagation also of the global gravity model errors described by Xs.

Fig.2: Geoid height [m]
“" differences (left] and error
... estimates (right) based onlocal
.. Ag data: Insufficient
representation of long-
#: wavelength gravity field
' information leads to long-
wavelength errors in the order
of 10m.

... Fig.3: Geoid height [m]
differences (left) and error
estimates (right) based on local
and global data: By inclusion of
A a global gravity field model the
... long-wavelength errors could
be considerably reduced.

IMPROVEMENT OF GLOBAL GEOID

In this case the functional z to be predicted is an updated version of the
spherical harmonic coefficients s. In the simplest case of model refinement
without increasing the spatial resolution (i.e. B: = I'), the coefficients pu are
derived from Eq. (4) and the optimal data combination results:
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iézg NUMERICAL CASE STUDY

TEST DATA ENVIRONMENT

* Gravitational potential is simulated on a spherical
grid aof GOCE satellite altitude (250 km) from
EGM96 up to degree/order 90 (see Fig. 1).

* White noise is added with a variance depending
on the latitude (satellite data have higher density
close to the poles and lower close to the equator).

* Polar gaps are simulated by adding noise with a
much higher variance above latitude 83°.

Fig.1: Grav. potential [m?/s]
atsatellite altitude (250 km).
1000 ground data (black dots).

SIMULATION RESULTS

* Spherical harmonic coefficients s, are estimated from the simulated grid data
along with the error covariance matrix, which has a block-diagonal structure.
Polar gaps produce a bad estimate of low-order coefficients (see Fig. 2).

* 1000 observations of gravity anomalies Ag, at ground level are simulated over
latitude 80° with a white noise of 1 mgal (see Fig. 1). A new global model is
re-estimated by combining the previously computed model and local data.
The effect of polar gaps is now compensated (see Fig. 3and Tab. 1).
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Fig.2: Estimation error by Fig.3: Estimation error after
using satellite dataonly. improving the globalmodel
by ground polar data.

Tab.1: Commission error up
to degree/order 90 and for
-90°<p<90°.

CONCLUSIONS

In this poster the problem of the combination of local (terrestrial) gravity field data and global gravity field
information is addressed. The main simplification with respect to reality is that the global and local data have
been simulated based on a consistent covariance model. Future work will address the necessary adaption of
the covariance model to local data, and a still consistently joint solution of the combined system.
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