Upper bounds on packing density for circular cylinders with high aspect ratio

Wöden Kusner

Research output: Contribution to journalArticleResearchpeer-review


In the early 1990s, A. Bezdek and W. Kuperberg used a relatively simple argument to show a surprising result: The maximum packing density of circular cylinders of infinite length in $\mathbb{R}^3$ is exactly $\pi/\sqrt{12}$, the planar packing density of the circle. This paper modifies their method to prove a bound on the packing density of finite length circular cylinders. In fact, the maximum packing density for unit radius cylinders of length $t$ in $\mathbb{R}^3$ is bounded above by $\pi/\sqrt{12} + 10/t$.
Original languageEnglish
JournalDiscrete & computational geometry
Issue number4
Publication statusPublished - 2014



  • math.MG
  • 52C17

Cite this