Ultrafast quantum control of ionization dynamics in krypton

Konrad Hütten, Michael Mittermair, Sebastian O. Stock, Randolf Beerwerth, Vahe Shirvanyan, Johann Riemensberger, Andreas Duensing, Rupert Heider, Martin S. Wagner, Alexander Guggenmos, Stephan Fritzsche, Nikolay M. Kabachnik, Reinhard Kienberger, Birgitta Bernhardt

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump–probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.
Original languageEnglish
Number of pages5
JournalNature Communications
Volume9
Issue number1
DOIs
Publication statusPublished - 19 Feb 2018
Externally publishedYes

Fields of Expertise

  • Advanced Materials Science

Cite this

Hütten, K., Mittermair, M., Stock, S. O., Beerwerth, R., Shirvanyan, V., Riemensberger, J., ... Bernhardt, B. (2018). Ultrafast quantum control of ionization dynamics in krypton. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03122-1

Ultrafast quantum control of ionization dynamics in krypton. / Hütten, Konrad; Mittermair, Michael; Stock, Sebastian O.; Beerwerth, Randolf; Shirvanyan, Vahe; Riemensberger, Johann; Duensing, Andreas; Heider, Rupert; Wagner, Martin S.; Guggenmos, Alexander; Fritzsche, Stephan; Kabachnik, Nikolay M.; Kienberger, Reinhard; Bernhardt, Birgitta.

In: Nature Communications, Vol. 9, No. 1, 19.02.2018.

Research output: Contribution to journalArticleResearchpeer-review

Hütten, K, Mittermair, M, Stock, SO, Beerwerth, R, Shirvanyan, V, Riemensberger, J, Duensing, A, Heider, R, Wagner, MS, Guggenmos, A, Fritzsche, S, Kabachnik, NM, Kienberger, R & Bernhardt, B 2018, 'Ultrafast quantum control of ionization dynamics in krypton' Nature Communications, vol. 9, no. 1. https://doi.org/10.1038/s41467-018-03122-1
Hütten K, Mittermair M, Stock SO, Beerwerth R, Shirvanyan V, Riemensberger J et al. Ultrafast quantum control of ionization dynamics in krypton. Nature Communications. 2018 Feb 19;9(1). https://doi.org/10.1038/s41467-018-03122-1
Hütten, Konrad ; Mittermair, Michael ; Stock, Sebastian O. ; Beerwerth, Randolf ; Shirvanyan, Vahe ; Riemensberger, Johann ; Duensing, Andreas ; Heider, Rupert ; Wagner, Martin S. ; Guggenmos, Alexander ; Fritzsche, Stephan ; Kabachnik, Nikolay M. ; Kienberger, Reinhard ; Bernhardt, Birgitta. / Ultrafast quantum control of ionization dynamics in krypton. In: Nature Communications. 2018 ; Vol. 9, No. 1.
@article{cb946cacbc8a4f3a9af29bc34dfceb15,
title = "Ultrafast quantum control of ionization dynamics in krypton",
abstract = "Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump–probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.",
author = "Konrad H{\"u}tten and Michael Mittermair and Stock, {Sebastian O.} and Randolf Beerwerth and Vahe Shirvanyan and Johann Riemensberger and Andreas Duensing and Rupert Heider and Wagner, {Martin S.} and Alexander Guggenmos and Stephan Fritzsche and Kabachnik, {Nikolay M.} and Reinhard Kienberger and Birgitta Bernhardt",
year = "2018",
month = "2",
day = "19",
doi = "10.1038/s41467-018-03122-1",
language = "English",
volume = "9",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
number = "1",

}

TY - JOUR

T1 - Ultrafast quantum control of ionization dynamics in krypton

AU - Hütten, Konrad

AU - Mittermair, Michael

AU - Stock, Sebastian O.

AU - Beerwerth, Randolf

AU - Shirvanyan, Vahe

AU - Riemensberger, Johann

AU - Duensing, Andreas

AU - Heider, Rupert

AU - Wagner, Martin S.

AU - Guggenmos, Alexander

AU - Fritzsche, Stephan

AU - Kabachnik, Nikolay M.

AU - Kienberger, Reinhard

AU - Bernhardt, Birgitta

PY - 2018/2/19

Y1 - 2018/2/19

N2 - Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump–probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.

AB - Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump–probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.

U2 - 10.1038/s41467-018-03122-1

DO - 10.1038/s41467-018-03122-1

M3 - Article

VL - 9

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

IS - 1

ER -