Tracking Ions the Direct Way: Long-Range Li+Dynamics in the Thio-LISICON Family Li4MCh4(M = Sn, Ge; Ch = S, Se) as Probed by 7Li NMR Relaxometry and 7Li Spin-Alignment Echo NMR

Katharina Hogrefe, Nicolò Minafra, Wolfgang G. Zeier, H. Martin R. Wilkening*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Solid electrolytes are key elements for next-generation energy storage systems. To design powerful electrolytes with high ionic conductivity, we need to improve our understanding of the mechanisms that are at the heart of the rapid ion exchange processes in solids. Such an understanding also requires evaluation and testing of methods not routinely used to characterize ion conductors. Here, the ternary Li4MCh4 system (M = Ge, Sn; Ch = Se, S) provides model compounds to study the applicability of 7Li nuclear magnetic resonance (NMR) spin-alignment echo (SAE) spectroscopy to probe slow Li+ exchange processes. Whereas the exact interpretation of conventional spin-lattice relaxation data depends on models, SAE NMR offers a model-independent, direct access to motional correlation rates. Indeed, the jump rates and activation energies deduced from time-domain relaxometry data perfectly agree with results from 7Li SAE NMR. In particular, long-range Li+ diffusion in polycrystalline Li4SnS4 as seen by NMR in a dynamic range covering 6 orders of magnitude is determined by an activation energy of Ea = 0.55 eV and a pre-exponential factor of 3 × 1013 s-1. The variation in Ea and 1/τ0 is related to the LiCh4 volume that changes within the four Li4MCh4 compounds studied. The corresponding volume of Li4SnS4 seems to be close to optimum for Li+ diffusivity.

Original languageEnglish
Pages (from-to)2306–2317
Number of pages12
JournalThe Journal of Physical Chemistry C
Volume125
Issue number4
DOIs
Publication statusPublished - 4 Feb 2021

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Tracking Ions the Direct Way: Long-Range Li+Dynamics in the Thio-LISICON Family Li4MCh4(M = Sn, Ge; Ch = S, Se) as Probed by 7Li NMR Relaxometry and 7Li Spin-Alignment Echo NMR'. Together they form a unique fingerprint.

Cite this