Titanium based porous cathode materials for lithium-oxygen batteries

Research output: Contribution to conferenceAbstractResearchpeer-review

Abstract

Conventional cathode materials in lithium-oxygen batteries suffer from degradation and therefore diminish the cycling efficiency of these promising future energy storage systems. Amongst fighting such degradation by other means [1], titanium carbide (TiC) based electrode materials were shown to resist the harsh reaction conditions in Li-O2 cells [2]. However, high capacities can only be obtained when highly porous electrode materials are employed. Herein we demonstrate a Ring-opening Olefin Metathesis Polymerization (ROMP) based way for the preparation of hierarchically porous TiC on carbon with BET-surface areas of approx. 450 m2/g. The synthetic route comprised emulsion templating of dicyclopentadiene [3], curing of the emulsion via ROMP, oxidation of the resulting monolith, filling of the pore structures with a Ti-monomer, a second ROMP step, and finally carbonization at 1400°C. The resulting conductive TiC foams were shown to be superior cathode materials in Li-O2 batteries in comparison to similarly prepared carbon foams and TiC nanoparticles.

[1] Mahne, N.; Schafzahl, B.; Leypold, C.; Leypold, M.; Grumm, S.; Leitgeb, A.; Strohmeier, G. A.; Wilkening, M.; Fontaine, O.; Kramer, D.; Slugovc, C.; Borisov, S. M.; Freunberger, S. A. Nat. Energy 2017, 2, 17036; [2] Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z.; Chen, Y.; Liu, Z.; Bruce, P. G. Nat. Materials 2013, 12, 1050; [3] Kovačič, S.; Matsko, N. B.; Jeřabek, K.; Krajnc, P.; Slugovc, C. J. Mater. Chem. A 2013, 1, 487.
Original languageEnglish
Publication statusPublished - 26 Mar 2018
Event10. Workshop Anorganische Chemie in Österreich - TU Graz, Graz, Austria
Duration: 26 Mar 201827 Mar 2018

Workshop

Workshop10. Workshop Anorganische Chemie in Österreich
Abbreviated titleWACÖ 2018
CountryAustria
CityGraz
Period26/03/1827/03/18

Fingerprint

Titanium
Lithium
Cathodes
Oxygen
Alkenes
dicyclopentadiene
Polymerization
Emulsions
Foams
Carbon
Degradation
Electrodes
Carbonization
Pore structure
Energy storage
Curing
Monomers
Nanoparticles
Oxidation
titanium carbide

Fields of Expertise

  • Advanced Materials Science

Cite this

Schafzahl, B., Freunberger, S., & Slugovc, C. (2018). Titanium based porous cathode materials for lithium-oxygen batteries. Abstract from 10. Workshop Anorganische Chemie in Österreich, Graz, Austria.

Titanium based porous cathode materials for lithium-oxygen batteries. / Schafzahl, Bettina; Freunberger, Stefan; Slugovc, Christian.

2018. Abstract from 10. Workshop Anorganische Chemie in Österreich, Graz, Austria.

Research output: Contribution to conferenceAbstractResearchpeer-review

Schafzahl, B, Freunberger, S & Slugovc, C 2018, 'Titanium based porous cathode materials for lithium-oxygen batteries' 10. Workshop Anorganische Chemie in Österreich, Graz, Austria, 26/03/18 - 27/03/18, .
Schafzahl B, Freunberger S, Slugovc C. Titanium based porous cathode materials for lithium-oxygen batteries. 2018. Abstract from 10. Workshop Anorganische Chemie in Österreich, Graz, Austria.
Schafzahl, Bettina ; Freunberger, Stefan ; Slugovc, Christian. / Titanium based porous cathode materials for lithium-oxygen batteries. Abstract from 10. Workshop Anorganische Chemie in Österreich, Graz, Austria.
@conference{8ecb6736fe2b4b2db67c4b08fb534490,
title = "Titanium based porous cathode materials for lithium-oxygen batteries",
abstract = "Conventional cathode materials in lithium-oxygen batteries suffer from degradation and therefore diminish the cycling efficiency of these promising future energy storage systems. Amongst fighting such degradation by other means [1], titanium carbide (TiC) based electrode materials were shown to resist the harsh reaction conditions in Li-O2 cells [2]. However, high capacities can only be obtained when highly porous electrode materials are employed. Herein we demonstrate a Ring-opening Olefin Metathesis Polymerization (ROMP) based way for the preparation of hierarchically porous TiC on carbon with BET-surface areas of approx. 450 m2/g. The synthetic route comprised emulsion templating of dicyclopentadiene [3], curing of the emulsion via ROMP, oxidation of the resulting monolith, filling of the pore structures with a Ti-monomer, a second ROMP step, and finally carbonization at 1400°C. The resulting conductive TiC foams were shown to be superior cathode materials in Li-O2 batteries in comparison to similarly prepared carbon foams and TiC nanoparticles.[1] Mahne, N.; Schafzahl, B.; Leypold, C.; Leypold, M.; Grumm, S.; Leitgeb, A.; Strohmeier, G. A.; Wilkening, M.; Fontaine, O.; Kramer, D.; Slugovc, C.; Borisov, S. M.; Freunberger, S. A. Nat. Energy 2017, 2, 17036; [2] Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z.; Chen, Y.; Liu, Z.; Bruce, P. G. Nat. Materials 2013, 12, 1050; [3] Kovačič, S.; Matsko, N. B.; Jeřabek, K.; Krajnc, P.; Slugovc, C. J. Mater. Chem. A 2013, 1, 487.",
author = "Bettina Schafzahl and Stefan Freunberger and Christian Slugovc",
year = "2018",
month = "3",
day = "26",
language = "English",
note = "10. Workshop Anorganische Chemie in {\"O}sterreich, WAC{\"O} 2018 ; Conference date: 26-03-2018 Through 27-03-2018",

}

TY - CONF

T1 - Titanium based porous cathode materials for lithium-oxygen batteries

AU - Schafzahl, Bettina

AU - Freunberger, Stefan

AU - Slugovc, Christian

PY - 2018/3/26

Y1 - 2018/3/26

N2 - Conventional cathode materials in lithium-oxygen batteries suffer from degradation and therefore diminish the cycling efficiency of these promising future energy storage systems. Amongst fighting such degradation by other means [1], titanium carbide (TiC) based electrode materials were shown to resist the harsh reaction conditions in Li-O2 cells [2]. However, high capacities can only be obtained when highly porous electrode materials are employed. Herein we demonstrate a Ring-opening Olefin Metathesis Polymerization (ROMP) based way for the preparation of hierarchically porous TiC on carbon with BET-surface areas of approx. 450 m2/g. The synthetic route comprised emulsion templating of dicyclopentadiene [3], curing of the emulsion via ROMP, oxidation of the resulting monolith, filling of the pore structures with a Ti-monomer, a second ROMP step, and finally carbonization at 1400°C. The resulting conductive TiC foams were shown to be superior cathode materials in Li-O2 batteries in comparison to similarly prepared carbon foams and TiC nanoparticles.[1] Mahne, N.; Schafzahl, B.; Leypold, C.; Leypold, M.; Grumm, S.; Leitgeb, A.; Strohmeier, G. A.; Wilkening, M.; Fontaine, O.; Kramer, D.; Slugovc, C.; Borisov, S. M.; Freunberger, S. A. Nat. Energy 2017, 2, 17036; [2] Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z.; Chen, Y.; Liu, Z.; Bruce, P. G. Nat. Materials 2013, 12, 1050; [3] Kovačič, S.; Matsko, N. B.; Jeřabek, K.; Krajnc, P.; Slugovc, C. J. Mater. Chem. A 2013, 1, 487.

AB - Conventional cathode materials in lithium-oxygen batteries suffer from degradation and therefore diminish the cycling efficiency of these promising future energy storage systems. Amongst fighting such degradation by other means [1], titanium carbide (TiC) based electrode materials were shown to resist the harsh reaction conditions in Li-O2 cells [2]. However, high capacities can only be obtained when highly porous electrode materials are employed. Herein we demonstrate a Ring-opening Olefin Metathesis Polymerization (ROMP) based way for the preparation of hierarchically porous TiC on carbon with BET-surface areas of approx. 450 m2/g. The synthetic route comprised emulsion templating of dicyclopentadiene [3], curing of the emulsion via ROMP, oxidation of the resulting monolith, filling of the pore structures with a Ti-monomer, a second ROMP step, and finally carbonization at 1400°C. The resulting conductive TiC foams were shown to be superior cathode materials in Li-O2 batteries in comparison to similarly prepared carbon foams and TiC nanoparticles.[1] Mahne, N.; Schafzahl, B.; Leypold, C.; Leypold, M.; Grumm, S.; Leitgeb, A.; Strohmeier, G. A.; Wilkening, M.; Fontaine, O.; Kramer, D.; Slugovc, C.; Borisov, S. M.; Freunberger, S. A. Nat. Energy 2017, 2, 17036; [2] Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z.; Chen, Y.; Liu, Z.; Bruce, P. G. Nat. Materials 2013, 12, 1050; [3] Kovačič, S.; Matsko, N. B.; Jeřabek, K.; Krajnc, P.; Slugovc, C. J. Mater. Chem. A 2013, 1, 487.

M3 - Abstract

ER -