Thermodynamic modelling of liquids: CALPHAD approaches and contributions from statistical physics

Chandler A. Becker*, John Agren, Marcello Baricco, Qing Chen, Sergei Decterov, Ursula Kattner, John Perepezko, Gernot Pottlacher, Malin Selleby

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We describe current approaches to thermodynamic modelling of liquids for the CALPHAD method, the use of available experimental methods and results in this type of modelling, and considerations in the use of atomic-scale simulation methods to inform a CALPHAD approach. We begin with an overview of the formalism currently used in CALPHAD to describe the temperature dependence of the liquid Gibbs free energy and outline opportunities for improvement by reviewing the current physical understanding of the liquid. Brief descriptions of experimental methods for extracting high-temperature data on liquids and the preparation of undercooled liquid samples are presented. Properties of a well-determined substance, B2 O3, including the glass transition, are then discussed in detail to emphasize specific modelling requirements for the liquid. We then examine the two-state model proposed for CALPHAD in detail and compare results with experiment and theory, where available. We further examine the contributions of atomic-scale methods to the understanding of liquids and their potential for supplementing available data. We discuss molecular dynamics (MD) and Monte Carlo methods that employ atomic interactions from classical interatomic potentials, as well as contributions from ab initio MD. We conclude with a summary of our findings.
Original languageEnglish
Pages (from-to)33-52
JournalPhysica Status Solidi (B): Basic Research
Volume251
Issue number1
DOIs
Publication statusPublished - 2014

Fields of Expertise

  • Advanced Materials Science

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)
  • Experimental

Fingerprint

Dive into the research topics of 'Thermodynamic modelling of liquids: CALPHAD approaches and contributions from statistical physics'. Together they form a unique fingerprint.
  • Thermophysics

    Pottlacher, G., Cagran, C. & Wilthan, B.

    1/01/82 → …

    Project: Research area

Cite this