The role of impact ionization in the transport properties of a periodically driven correlated layer - a Floquet DMFT study

Max Erich Sorantin, Enrico Arrigoni

Research output: Contribution to conferencePosterResearch

Abstract

Recently, Mott-insulating heterostructures have been proposed as candidates for highly efficient solar cells [1,2]. Here, photoexcited doublons and holes act as charge carriers which can proliferate due to impact ionisation processes [2]. Previous works have investigated the doublon dynamics in such systems within time-dependent Dynamical Mean-Field Theory (DMFT) by looking at the time evolution after a photoexcitation [3,4].

In the present work we focus on the (quasi-) steady state of periodically driven quantum systems. Specifically, we implement an algorithm to deal with periodic steady states of strongly correlated systems, making use of the nonequilibrium Floquet Green's function formalism within the DMFT approximation. Our model consists of a correlated layer subject to a periodic driving via a homogeneous electric field coupled to leads with an applied bias voltage. Furthermore, we generalize the system to a multilayer structure where the additional layers are used to model an electric field gradient.

We employ the Auxiliary Master Equation Approach (AMEA) [6-8] to solve the time averaged impurity problem and assess the validity of this approximation by comparison with Iterated Perturbation Theory (IPT) [9].

Investigating the results for the double accupancy, current and spectralfunction in dependence
of the external driving frequency suggests that impact ionization plays a domniant role in
the steady state dynamics.

References

[1] E. Manousakis, Phys. Rev. B 82, 125109, (2010)
[2] E.Assman et al., Phys. Rev. Lett. 110, 078701 (2013)
[3] J.Coulter et al., Phys. Rev. B 90, 165142 (2014)
[4] M.Eckstein and P. Werner, Phys. Rev. Lett. 113, 076405 (2014)
[5] P. Werner et al., Phys. Rev. B 90, 235102 (2014)
[6] E. Arrigoni et al., Phys. Rrev. Lett. 110, 086403 (2013)
[7] I. Titvinidze et al., Phys. Rev. B 92, 245125 (2015)
[8] A.Dorda et al., New J. Phys., to be published (2017)
[9] A. Joura et al., Phys Rrev. B 91, 245153 (2015)
Original languageEnglish
Publication statusPublished - 19 Jun 2017
Event645. WE-Heraeus-Seminar: Emergent Phenomena and Universality in Correlated Quantum Systems Far Away from Equilibrium - Physikzentrum Bad Honnef, Bad Honnef, Germany
Duration: 19 Jun 201724 Jun 2017
http://indico.universe-cluster.de/indico/confRegistrationFormDisplay.py/display?confId=3705

Seminar

Seminar645. WE-Heraeus-Seminar
CountryGermany
CityBad Honnef
Period19/06/1724/06/17
Internet address

    Fingerprint

Keywords

  • PERIODICALLY DRIVEN QUANTUM SYSTEMS

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fields of Expertise

  • Advanced Materials Science

Treatment code (Nähere Zuordnung)

  • Theoretical

Cite this

Sorantin, M. E., & Arrigoni, E. (2017). The role of impact ionization in the transport properties of a periodically driven correlated layer - a Floquet DMFT study. Poster session presented at 645. WE-Heraeus-Seminar, Bad Honnef, Germany.