The Most Generative Maximum Margin Bayesian Networks

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

LanguageEnglish
Title of host publicationInternational Conference on Machine Learning
Publisher.
Pages235-243
StatusPublished - 2013

Fields of Expertise

  • Information, Communication & Computing

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)

Cite this

Peharz, R., Tschiatschek, S., & Pernkopf, F. (2013). The Most Generative Maximum Margin Bayesian Networks. In International Conference on Machine Learning (pp. 235-243). ..

The Most Generative Maximum Margin Bayesian Networks. / Peharz, Robert; Tschiatschek, Sebastian; Pernkopf, Franz.

International Conference on Machine Learning. ., 2013. p. 235-243.

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Peharz, R, Tschiatschek, S & Pernkopf, F 2013, The Most Generative Maximum Margin Bayesian Networks. in International Conference on Machine Learning. ., pp. 235-243.
Peharz R, Tschiatschek S, Pernkopf F. The Most Generative Maximum Margin Bayesian Networks. In International Conference on Machine Learning. . 2013. p. 235-243
Peharz, Robert ; Tschiatschek, Sebastian ; Pernkopf, Franz. / The Most Generative Maximum Margin Bayesian Networks. International Conference on Machine Learning. ., 2013. pp. 235-243
@inproceedings{b5cdf42969d648f1910651029c90e0cb,
title = "The Most Generative Maximum Margin Bayesian Networks",
author = "Robert Peharz and Sebastian Tschiatschek and Franz Pernkopf",
year = "2013",
language = "English",
pages = "235--243",
booktitle = "International Conference on Machine Learning",
publisher = ".",

}

TY - GEN

T1 - The Most Generative Maximum Margin Bayesian Networks

AU - Peharz, Robert

AU - Tschiatschek, Sebastian

AU - Pernkopf, Franz

PY - 2013

Y1 - 2013

UR - http://jmlr.org/proceedings/papers/v28/peharz13.pdf

M3 - Conference contribution

SP - 235

EP - 243

BT - International Conference on Machine Learning

PB - .

ER -