The genus of the Erdős-Rényi random graph and the fragile genus property

C. Dowden, M. Kang, M. Krivelevich

Research output: Contribution to journalArticleResearchpeer-review

Abstract

We investigate the genus g(n,m) of the Erdős‐Rényi random graph G(n,m), providing a thorough description of how this relates to the function m = m(n), and finding that there is different behavior depending on which “region” m falls into.
Results already exist for urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0001 and urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0002 for urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0003, and so we focus on the intermediate cases. We establish that urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0004 whp (with high probability) when n ≪ m = n1 + o(1), that g(n,m) = (1 + o(1))μ(λ)m whp for a given function μ(λ) when m∼λn for urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0005, and that urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0006 whp when urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0007 for n2/3 ≪ s ≪ n.
We then also show that the genus of a fixed graph can increase dramatically if a small number of random edges are added. Given any connected graph with bounded maximum degree, we find that the addition of ϵn edges will whp result in a graph with genus Ω(n), even when ϵ is an arbitrarily small constant! We thus call this the “fragile genus” property.
Original languageEnglish
Number of pages25
JournalRandom structures & algorithms
DOIs
Publication statusE-pub ahead of print - 2019

Fingerprint

Random Graphs
Genus
M-function
Graph in graph theory
Maximum Degree
Connected graph

Cite this

The genus of the Erdős-Rényi random graph and the fragile genus property. / Dowden, C.; Kang, M.; Krivelevich, M.

In: Random structures & algorithms, 2019.

Research output: Contribution to journalArticleResearchpeer-review

@article{bb9d32dffde2419b9699d8100f4b4edb,
title = "The genus of the Erdős-R{\'e}nyi random graph and the fragile genus property",
abstract = "We investigate the genus g(n,m) of the Erdős‐R{\'e}nyi random graph G(n,m), providing a thorough description of how this relates to the function m = m(n), and finding that there is different behavior depending on which “region” m falls into.Results already exist for urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0001 and urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0002 for urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0003, and so we focus on the intermediate cases. We establish that urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0004 whp (with high probability) when n ≪ m = n1 + o(1), that g(n,m) = (1 + o(1))μ(λ)m whp for a given function μ(λ) when m∼λn for urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0005, and that urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0006 whp when urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0007 for n2/3 ≪ s ≪ n.We then also show that the genus of a fixed graph can increase dramatically if a small number of random edges are added. Given any connected graph with bounded maximum degree, we find that the addition of ϵn edges will whp result in a graph with genus Ω(n), even when ϵ is an arbitrarily small constant! We thus call this the “fragile genus” property.",
author = "C. Dowden and M. Kang and M. Krivelevich",
year = "2019",
doi = "10.1002/rsa.20871",
language = "English",
journal = "Random structures & algorithms",
issn = "1042-9832",
publisher = "John Wiley and Sons Ltd",

}

TY - JOUR

T1 - The genus of the Erdős-Rényi random graph and the fragile genus property

AU - Dowden, C.

AU - Kang, M.

AU - Krivelevich, M.

PY - 2019

Y1 - 2019

N2 - We investigate the genus g(n,m) of the Erdős‐Rényi random graph G(n,m), providing a thorough description of how this relates to the function m = m(n), and finding that there is different behavior depending on which “region” m falls into.Results already exist for urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0001 and urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0002 for urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0003, and so we focus on the intermediate cases. We establish that urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0004 whp (with high probability) when n ≪ m = n1 + o(1), that g(n,m) = (1 + o(1))μ(λ)m whp for a given function μ(λ) when m∼λn for urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0005, and that urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0006 whp when urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0007 for n2/3 ≪ s ≪ n.We then also show that the genus of a fixed graph can increase dramatically if a small number of random edges are added. Given any connected graph with bounded maximum degree, we find that the addition of ϵn edges will whp result in a graph with genus Ω(n), even when ϵ is an arbitrarily small constant! We thus call this the “fragile genus” property.

AB - We investigate the genus g(n,m) of the Erdős‐Rényi random graph G(n,m), providing a thorough description of how this relates to the function m = m(n), and finding that there is different behavior depending on which “region” m falls into.Results already exist for urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0001 and urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0002 for urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0003, and so we focus on the intermediate cases. We establish that urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0004 whp (with high probability) when n ≪ m = n1 + o(1), that g(n,m) = (1 + o(1))μ(λ)m whp for a given function μ(λ) when m∼λn for urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0005, and that urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0006 whp when urn:x-wiley:rsa:media:rsa20871:rsa20871-math-0007 for n2/3 ≪ s ≪ n.We then also show that the genus of a fixed graph can increase dramatically if a small number of random edges are added. Given any connected graph with bounded maximum degree, we find that the addition of ϵn edges will whp result in a graph with genus Ω(n), even when ϵ is an arbitrarily small constant! We thus call this the “fragile genus” property.

UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-85067414192&partnerID=MN8TOARS

U2 - 10.1002/rsa.20871

DO - 10.1002/rsa.20871

M3 - Article

JO - Random structures & algorithms

JF - Random structures & algorithms

SN - 1042-9832

ER -