Temporal Coherence for Active Learning in Videos

Javad Zolfaghari Bengar, Abel Gonzales-Garcia, Gabriel Villalonga, Bogdan Raducanu, Hamed Habibi Aghdam, Mikhail Mozerov, Antonio M. Lopez, Joost van de Weijer

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review


Autonomous driving systems require huge amounts of data to train. Manual annotation of this data is time-consuming and prohibitively expensive since it involves human resources. Therefore, active learning emerged as an alternative to ease this effort and to make data annotation more manageable. In this paper, we introduce a novel active learning approach for object detection in videos by exploiting temporal coherence. Our active learning criterion is based on the estimated number of errors in terms of false positives and false negatives. The detections obtained by the object detector are used to define the nodes of a graph and tracked forward and backward to temporally link the nodes. Minimizing an energy function defined on this graphical model provides estimates of both false positives and false negatives. Additionally, we introduce a synthetic video dataset, called SYNTHIA-AL, specially designed to evaluate active learning for video object detection in road scenes. Finally, we show that our approach outperforms active learning baselines tested on two datasets.
Original languageEnglish
Title of host publicationCVRSUAD 2019
Number of pages10
Publication statusAccepted/In press - 2019
Externally publishedYes
EventCVRSUAD 2019: 7th Workshop on Computer Vision for Road Scence Understanding & Autonomous Driving - Seoul, Korea, Republic of
Duration: 27 Oct 2019 → …


ConferenceCVRSUAD 2019
CountryKorea, Republic of
Period27/10/19 → …


Cite this

Zolfaghari Bengar, J., Gonzales-Garcia, A., Villalonga, G., Raducanu, B., Habibi Aghdam, H., Mozerov, M., ... van de Weijer, J. (Accepted/In press). Temporal Coherence for Active Learning in Videos. In CVRSUAD 2019