Studying Confirmation Bias in Hashtag Usage on Twitter

Research output: Contribution to journalArticleResearchpeer-review

Abstract

The micro-blogging platform Twitter allows its nearly 320 million monthly active users to build a network of follower connections to other Twitter users (i.e., followees) in order to subscribe to content posted by these users. With this feature, Twitter has become one of the most popular social networks on the Web and was also the first platform that offered the concept of hashtags. Hashtags are freely-chosen keywords, which start with the hash character, to annotate, categorize and contextualize Twitter posts (i.e., tweets). Although hashtags are widely accepted and used by the Twitter community, the heavy reuse of hashtags that are popular in the personal Twitter networks (i.e., own hashtags and hashtags used by followees) can lead to filter bubble effects and thus, to situations, in which only content associated with these hashtags are presented to the user. These filter bubble effects are also highly associated with the concept of confirmation bias, which is the tendency to favor and reuse information that confirms personal preferences. One example would be a Twitter user who is interested in political tweets of US president Donald Trump. Depending on the hashtags used, the user could either be stuck in a pro-Trump (e.g., #MAGA) or contra-Trump (e.g., #fakepresident) filter bubble. Therefore, the goal of this paper is to study confirmation bias and filter bubble effects in hashtag usage on Twitter by treating the reuse of hashtags as a phenomenon that fosters confirmation bias.
Original languageEnglish
Article number arXiv:1809.03203
JournalarXiv.org e-Print archive
DOIs
Publication statusPublished - 10 Sep 2018
EventEuropean Symposium on Societal Challenges in Computational Social Science: Bias and Discrimination - Köln, Germany
Duration: 5 Dec 20187 Dec 2018

Keywords

  • cs.IR
  • cs.SI

Cite this

Studying Confirmation Bias in Hashtag Usage on Twitter. / Kowald, Dominik; Lex, Elisabeth.

In: arXiv.org e-Print archive, 10.09.2018.

Research output: Contribution to journalArticleResearchpeer-review

@article{51f1bda716ae494b9c2311470e7dfb3a,
title = "Studying Confirmation Bias in Hashtag Usage on Twitter",
abstract = "The micro-blogging platform Twitter allows its nearly 320 million monthly active users to build a network of follower connections to other Twitter users (i.e., followees) in order to subscribe to content posted by these users. With this feature, Twitter has become one of the most popular social networks on the Web and was also the first platform that offered the concept of hashtags. Hashtags are freely-chosen keywords, which start with the hash character, to annotate, categorize and contextualize Twitter posts (i.e., tweets). Although hashtags are widely accepted and used by the Twitter community, the heavy reuse of hashtags that are popular in the personal Twitter networks (i.e., own hashtags and hashtags used by followees) can lead to filter bubble effects and thus, to situations, in which only content associated with these hashtags are presented to the user. These filter bubble effects are also highly associated with the concept of confirmation bias, which is the tendency to favor and reuse information that confirms personal preferences. One example would be a Twitter user who is interested in political tweets of US president Donald Trump. Depending on the hashtags used, the user could either be stuck in a pro-Trump (e.g., #MAGA) or contra-Trump (e.g., #fakepresident) filter bubble. Therefore, the goal of this paper is to study confirmation bias and filter bubble effects in hashtag usage on Twitter by treating the reuse of hashtags as a phenomenon that fosters confirmation bias.",
keywords = "cs.IR, cs.SI",
author = "Dominik Kowald and Elisabeth Lex",
year = "2018",
month = "9",
day = "10",
doi = "https://arxiv.org/abs/1809.03203",
language = "English",
journal = "arXiv.org e-Print archive",
publisher = "Cornell University Library",

}

TY - JOUR

T1 - Studying Confirmation Bias in Hashtag Usage on Twitter

AU - Kowald, Dominik

AU - Lex, Elisabeth

PY - 2018/9/10

Y1 - 2018/9/10

N2 - The micro-blogging platform Twitter allows its nearly 320 million monthly active users to build a network of follower connections to other Twitter users (i.e., followees) in order to subscribe to content posted by these users. With this feature, Twitter has become one of the most popular social networks on the Web and was also the first platform that offered the concept of hashtags. Hashtags are freely-chosen keywords, which start with the hash character, to annotate, categorize and contextualize Twitter posts (i.e., tweets). Although hashtags are widely accepted and used by the Twitter community, the heavy reuse of hashtags that are popular in the personal Twitter networks (i.e., own hashtags and hashtags used by followees) can lead to filter bubble effects and thus, to situations, in which only content associated with these hashtags are presented to the user. These filter bubble effects are also highly associated with the concept of confirmation bias, which is the tendency to favor and reuse information that confirms personal preferences. One example would be a Twitter user who is interested in political tweets of US president Donald Trump. Depending on the hashtags used, the user could either be stuck in a pro-Trump (e.g., #MAGA) or contra-Trump (e.g., #fakepresident) filter bubble. Therefore, the goal of this paper is to study confirmation bias and filter bubble effects in hashtag usage on Twitter by treating the reuse of hashtags as a phenomenon that fosters confirmation bias.

AB - The micro-blogging platform Twitter allows its nearly 320 million monthly active users to build a network of follower connections to other Twitter users (i.e., followees) in order to subscribe to content posted by these users. With this feature, Twitter has become one of the most popular social networks on the Web and was also the first platform that offered the concept of hashtags. Hashtags are freely-chosen keywords, which start with the hash character, to annotate, categorize and contextualize Twitter posts (i.e., tweets). Although hashtags are widely accepted and used by the Twitter community, the heavy reuse of hashtags that are popular in the personal Twitter networks (i.e., own hashtags and hashtags used by followees) can lead to filter bubble effects and thus, to situations, in which only content associated with these hashtags are presented to the user. These filter bubble effects are also highly associated with the concept of confirmation bias, which is the tendency to favor and reuse information that confirms personal preferences. One example would be a Twitter user who is interested in political tweets of US president Donald Trump. Depending on the hashtags used, the user could either be stuck in a pro-Trump (e.g., #MAGA) or contra-Trump (e.g., #fakepresident) filter bubble. Therefore, the goal of this paper is to study confirmation bias and filter bubble effects in hashtag usage on Twitter by treating the reuse of hashtags as a phenomenon that fosters confirmation bias.

KW - cs.IR

KW - cs.SI

U2 - https://arxiv.org/abs/1809.03203

DO - https://arxiv.org/abs/1809.03203

M3 - Article

JO - arXiv.org e-Print archive

JF - arXiv.org e-Print archive

M1 - arXiv:1809.03203

ER -