TY - JOUR
T1 - Studierfenster
T2 - an Open Science Cloud-Based Medical Imaging Analysis Platform
AU - Egger, Jan
AU - Wild, Daniel
AU - Weber, Maximilian
AU - Bedoya, Christopher A.Ramirez
AU - Karner, Florian
AU - Prutsch, Alexander
AU - Schmied, Michael
AU - Dionysio, Christina
AU - Krobath, Dominik
AU - Jin, Yuan
AU - Gsaxner, Christina
AU - Li, Jianning
AU - Pepe, Antonio
N1 - Funding Information:
This work received funding from the Austrian Science Fund (FWF) KLI 678-B31: “enFaced: Virtual and Augmented Reality Training and Navigation Module for 3D-Printed Facial Defect Reconstructions” and the TU Graz Lead Project (“Mechanics, Modeling, and Simulation of Aortic Dissection”). Moreover, this work was supported by “CAMed” (COMET K-Project 871132), which is funded by the Austrian Federal Ministry of Transport, Innovation, and Technology (BMVIT); the Austrian Federal Ministry for Digital and Economic Affairs (BMDW); and the Styrian Business Promotion Agency (SFG). Finally, the REACT-EU project KITE (Plattform für KI-Translation Essen) also provided support.
Publisher Copyright:
© 2022, The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.
PY - 2022/4
Y1 - 2022/4
N2 - Imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI) are widely used in diagnostics, clinical studies, and treatment planning. Automatic algorithms for image analysis have thus become an invaluable tool in medicine. Examples of this are two- and three-dimensional visualizations, image segmentation, and the registration of all anatomical structure and pathology types. In this context, we introduce Studierfenster (www.studierfenster.at): a free, non-commercial open science client-server framework for (bio-)medical image analysis. Studierfenster offers a wide range of capabilities, including the visualization of medical data (CT, MRI, etc.) in two-dimensional (2D) and three-dimensional (3D) space in common web browsers, such as Google Chrome, Mozilla Firefox, Safari, or Microsoft Edge. Other functionalities are the calculation of medical metrics (dice score and Hausdorff distance), manual slice-by-slice outlining of structures in medical images, manual placing of (anatomical) landmarks in medical imaging data, visualization of medical data in virtual reality (VR), and a facial reconstruction and registration of medical data for augmented reality (AR). More sophisticated features include the automatic cranial implant design with a convolutional neural network (CNN), the inpainting of aortic dissections with a generative adversarial network, and a CNN for automatic aortic landmark detection in CT angiography images. A user study with medical and non-medical experts in medical image analysis was performed, to evaluate the usability and the manual functionalities of Studierfenster. When participants were asked about their overall impression of Studierfenster in an ISO standard (ISO-Norm) questionnaire, a mean of 6.3 out of 7.0 possible points were achieved. The evaluation also provided insights into the results achievable with Studierfenster in practice, by comparing these with two ground truth segmentations performed by a physician of the Medical University of Graz in Austria. In this contribution, we presented an online environment for (bio-)medical image analysis. In doing so, we established a client-server-based architecture, which is able to process medical data, especially 3D volumes. Our online environment is not limited to medical applications for humans. Rather, its underlying concept could be interesting for researchers from other fields, in applying the already existing functionalities or future additional implementations of further image processing applications. An example could be the processing of medical acquisitions like CT or MRI from animals [Clinical Pharmacology & Therapeutics, 84(4):448–456, 68], which get more and more common, as veterinary clinics and centers get more and more equipped with such imaging devices. Furthermore, applications in entirely non-medical research in which images/volumes need to be processed are also thinkable, such as those in optical measuring techniques, astronomy, or archaeology.
AB - Imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI) are widely used in diagnostics, clinical studies, and treatment planning. Automatic algorithms for image analysis have thus become an invaluable tool in medicine. Examples of this are two- and three-dimensional visualizations, image segmentation, and the registration of all anatomical structure and pathology types. In this context, we introduce Studierfenster (www.studierfenster.at): a free, non-commercial open science client-server framework for (bio-)medical image analysis. Studierfenster offers a wide range of capabilities, including the visualization of medical data (CT, MRI, etc.) in two-dimensional (2D) and three-dimensional (3D) space in common web browsers, such as Google Chrome, Mozilla Firefox, Safari, or Microsoft Edge. Other functionalities are the calculation of medical metrics (dice score and Hausdorff distance), manual slice-by-slice outlining of structures in medical images, manual placing of (anatomical) landmarks in medical imaging data, visualization of medical data in virtual reality (VR), and a facial reconstruction and registration of medical data for augmented reality (AR). More sophisticated features include the automatic cranial implant design with a convolutional neural network (CNN), the inpainting of aortic dissections with a generative adversarial network, and a CNN for automatic aortic landmark detection in CT angiography images. A user study with medical and non-medical experts in medical image analysis was performed, to evaluate the usability and the manual functionalities of Studierfenster. When participants were asked about their overall impression of Studierfenster in an ISO standard (ISO-Norm) questionnaire, a mean of 6.3 out of 7.0 possible points were achieved. The evaluation also provided insights into the results achievable with Studierfenster in practice, by comparing these with two ground truth segmentations performed by a physician of the Medical University of Graz in Austria. In this contribution, we presented an online environment for (bio-)medical image analysis. In doing so, we established a client-server-based architecture, which is able to process medical data, especially 3D volumes. Our online environment is not limited to medical applications for humans. Rather, its underlying concept could be interesting for researchers from other fields, in applying the already existing functionalities or future additional implementations of further image processing applications. An example could be the processing of medical acquisitions like CT or MRI from animals [Clinical Pharmacology & Therapeutics, 84(4):448–456, 68], which get more and more common, as veterinary clinics and centers get more and more equipped with such imaging devices. Furthermore, applications in entirely non-medical research in which images/volumes need to be processed are also thinkable, such as those in optical measuring techniques, astronomy, or archaeology.
KW - Augmented reality
KW - Client/server
KW - Cloud
KW - CNN
KW - Deep learning
KW - GAN
KW - ITK
KW - Medical image analysis
KW - Python
KW - Virtual reality
KW - VTK
KW - Whitepaper
UR - http://www.scopus.com/inward/record.url?scp=85123251513&partnerID=8YFLogxK
U2 - 10.1007/s10278-021-00574-8
DO - 10.1007/s10278-021-00574-8
M3 - Article
C2 - 35064372
AN - SCOPUS:85123251513
VL - 35
SP - 340
EP - 355
JO - Journal of Digital Imaging
JF - Journal of Digital Imaging
SN - 0897-1889
IS - 2
ER -