TY - JOUR
T1 - Structure, DFT Calculations, and Magnetic Characterization of Coordination Polymers of Bridged Dicyanamido-Metal(II) Complexes
AU - Mautner, Franz-Andreas
AU - Jantscher, Patricia Vanessa
AU - Fischer, Roland
AU - Torvisco Gomez, Ana
AU - Vicente, Ramon
AU - Karsili, Tolga N.V.
AU - Massoud, Salah S.
PY - 2019/7/2
Y1 - 2019/7/2
N2 - Three coordination polymers of metal(II)-dicyanamido (dca) complexes with 4-methoxypyridine-N-oxide (4-MOP-NO); namely, catena-[Co(µ1,5-dca)2(4-MOP-NO)2] (1), catena-[Mn(µ1,5-dca)2(4-MOP-NO)2] (2), catena-[Cd(µ1,5-dca)2(4-MOP-NO)2] (3), and the mononuclear [Cu(κ1dca)2(4-MOP-NO)2] (4), were synthesized in this research. The complexes were analyzed by single crystal X-ray diffraction as well as spectroscopic methods (UV/vis, IR). The polymeric 1-D chains in complexes 1–3 were achieved by the doubly µ1,5-bridging dca ligands and the O-donor atoms of two axial 4-MOP-NO molecules in trans configuration around the distorted M(II) octahedral. On the other hand, the two “trans-axial” pyridine-N-oxide molecules in complexes 2 and 3 display opposite orientation (s-trans). The DFT (density functional theory) computational studies on the complexes 1–3 were consistent with the experimentally observed crystal structures. Compounds 1 and 2 display weak antiferromagnetic coupling between metal ions (J = −10.8 for 1 and −0.35 for 2).
AB - Three coordination polymers of metal(II)-dicyanamido (dca) complexes with 4-methoxypyridine-N-oxide (4-MOP-NO); namely, catena-[Co(µ1,5-dca)2(4-MOP-NO)2] (1), catena-[Mn(µ1,5-dca)2(4-MOP-NO)2] (2), catena-[Cd(µ1,5-dca)2(4-MOP-NO)2] (3), and the mononuclear [Cu(κ1dca)2(4-MOP-NO)2] (4), were synthesized in this research. The complexes were analyzed by single crystal X-ray diffraction as well as spectroscopic methods (UV/vis, IR). The polymeric 1-D chains in complexes 1–3 were achieved by the doubly µ1,5-bridging dca ligands and the O-donor atoms of two axial 4-MOP-NO molecules in trans configuration around the distorted M(II) octahedral. On the other hand, the two “trans-axial” pyridine-N-oxide molecules in complexes 2 and 3 display opposite orientation (s-trans). The DFT (density functional theory) computational studies on the complexes 1–3 were consistent with the experimentally observed crystal structures. Compounds 1 and 2 display weak antiferromagnetic coupling between metal ions (J = −10.8 for 1 and −0.35 for 2).
U2 - 10.3390/magnetochemistry5030041
DO - 10.3390/magnetochemistry5030041
M3 - Article
VL - 5
JO - Magnetochemistry
JF - Magnetochemistry
SN - 2312-7481
IS - 3
M1 - 41
ER -