Spin-orbit coupling and correlations in three-orbital systems

Robert Triebl, Gernot J. Kraberger, Jernej Mravlje, Markus Aichhorn

Research output: Contribution to journalArticlepeer-review

Abstract

We investigate the influence of spin-orbit coupling λ in strongly-correlated multiorbital systems that we describe by a three-orbital Hubbard-Kanamori model on a Bethe lattice. We solve the problem at all integer fillings N with the dynamical mean-field theory using the continuous-time hybridization expansion Monte Carlo solver. We investigate how the quasiparticle renormalization Z varies with the strength of spin-orbit coupling. The behavior can be understood for all fillings except N=2 in terms of the atomic Hamiltonian (the atomic charge gap) and the polarization in the j basis due to spin-orbit induced changes of orbital degeneracies and the associated kinetic energy. At N=2, λ increases Z at small U but suppresses it at large U, thus eliminating the characteristic Hund's metal tail in Z(U). We also compare the effects of the spin-orbit coupling to the effects of a tetragonal crystal field. Although this crystal field also lifts the orbital degeneracy, its effects are different, which can be understood in terms of the different form of the interaction Hamiltonian expressed in the respective diagonal single-particle basis.
Original languageEnglish
Article number205128
Number of pages14
JournalPhysical Review B
Volume98
Issue number205128
DOIs
Publication statusPublished - 16 Nov 2018

Fields of Expertise

  • Advanced Materials Science

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)
  • Theoretical

Cooperations

  • NAWI Graz

Fingerprint

Dive into the research topics of 'Spin-orbit coupling and correlations in three-orbital systems'. Together they form a unique fingerprint.

Cite this