Sparse matrix assembly on the GPU through multiplication patterns

R. Zayer, M. Steinberger, H. P. Seidel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

LanguageUndefined/Unknown
Title of host publication2017 IEEE High Performance Extreme Computing Conference (HPEC)
Pages1-8
Number of pages8
DOIs
StatusPublished - 1 Sep 2017

Keywords

  • data structures
  • graph theory
  • graphics processing units
  • linear algebra
  • mathematics computing
  • matrix multiplication
  • mesh generation
  • parallel processing
  • query processing
  • sparse matrices
  • GPU
  • assembled matrix
  • assembly performance
  • assembly problem
  • assembly step
  • basic linear algebra operations
  • elementary contributions
  • explicit matrix form
  • global graph connectivity
  • graphics hardware
  • lean unstructured mesh representation
  • memory storage requirements
  • mesh memory layout
  • mesh querying data structures
  • multiplication patterns
  • numerical solvers
  • numerical treatment
  • parallel computing hardware
  • sparse matrix assembly
  • sparse matrix-matrix multiplication
  • standard HPC platforms
  • variational problems
  • vectorization
  • Graphics processing units
  • Hardware
  • Matrices
  • Memory management
  • Sparse matrices
  • Standards

Cite this

Zayer, R., Steinberger, M., & Seidel, H. P. (2017). Sparse matrix assembly on the GPU through multiplication patterns. In 2017 IEEE High Performance Extreme Computing Conference (HPEC) (pp. 1-8). DOI: 10.1109/HPEC.2017.8091057

Sparse matrix assembly on the GPU through multiplication patterns. / Zayer, R.; Steinberger, M.; Seidel, H. P.

2017 IEEE High Performance Extreme Computing Conference (HPEC). 2017. p. 1-8.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Zayer, R, Steinberger, M & Seidel, HP 2017, Sparse matrix assembly on the GPU through multiplication patterns. in 2017 IEEE High Performance Extreme Computing Conference (HPEC). pp. 1-8. DOI: 10.1109/HPEC.2017.8091057
Zayer R, Steinberger M, Seidel HP. Sparse matrix assembly on the GPU through multiplication patterns. In 2017 IEEE High Performance Extreme Computing Conference (HPEC). 2017. p. 1-8. Available from, DOI: 10.1109/HPEC.2017.8091057
Zayer, R. ; Steinberger, M. ; Seidel, H. P./ Sparse matrix assembly on the GPU through multiplication patterns. 2017 IEEE High Performance Extreme Computing Conference (HPEC). 2017. pp. 1-8
@inproceedings{1941f4d80d3e45b8b83fdc644c7fd117,
title = "Sparse matrix assembly on the GPU through multiplication patterns",
keywords = "data structures, graph theory, graphics processing units, linear algebra, mathematics computing, matrix multiplication, mesh generation, parallel processing, query processing, sparse matrices, GPU, assembled matrix, assembly performance, assembly problem, assembly step, basic linear algebra operations, elementary contributions, explicit matrix form, global graph connectivity, graphics hardware, lean unstructured mesh representation, memory storage requirements, mesh memory layout, mesh querying data structures, multiplication patterns, numerical solvers, numerical treatment, parallel computing hardware, sparse matrix assembly, sparse matrix-matrix multiplication, standard HPC platforms, variational problems, vectorization, Graphics processing units, Hardware, Matrices, Memory management, Sparse matrices, Standards",
author = "R. Zayer and M. Steinberger and Seidel, {H. P.}",
year = "2017",
month = "9",
day = "1",
doi = "10.1109/HPEC.2017.8091057",
language = "undefiniert/unbekannt",
pages = "1--8",
booktitle = "2017 IEEE High Performance Extreme Computing Conference (HPEC)",

}

TY - GEN

T1 - Sparse matrix assembly on the GPU through multiplication patterns

AU - Zayer,R.

AU - Steinberger,M.

AU - Seidel,H. P.

PY - 2017/9/1

Y1 - 2017/9/1

KW - data structures

KW - graph theory

KW - graphics processing units

KW - linear algebra

KW - mathematics computing

KW - matrix multiplication

KW - mesh generation

KW - parallel processing

KW - query processing

KW - sparse matrices

KW - GPU

KW - assembled matrix

KW - assembly performance

KW - assembly problem

KW - assembly step

KW - basic linear algebra operations

KW - elementary contributions

KW - explicit matrix form

KW - global graph connectivity

KW - graphics hardware

KW - lean unstructured mesh representation

KW - memory storage requirements

KW - mesh memory layout

KW - mesh querying data structures

KW - multiplication patterns

KW - numerical solvers

KW - numerical treatment

KW - parallel computing hardware

KW - sparse matrix assembly

KW - sparse matrix-matrix multiplication

KW - standard HPC platforms

KW - variational problems

KW - vectorization

KW - Graphics processing units

KW - Hardware

KW - Matrices

KW - Memory management

KW - Sparse matrices

KW - Standards

U2 - 10.1109/HPEC.2017.8091057

DO - 10.1109/HPEC.2017.8091057

M3 - Beitrag in einem Konferenzband

SP - 1

EP - 8

BT - 2017 IEEE High Performance Extreme Computing Conference (HPEC)

ER -