Remarkable impact of low BiYbO3 doping levels on the local structure and phase transitions of BaTiO3

M. Deluca, Z. G. Al-Jlaihawi, K. Reichmann, A. M.T. Bell, A. Feteira

Research output: Contribution to journalArticle


In situ Raman spectroscopy shows the simultaneous incorporation of small amounts of Bi3+ and Yb3+ into the lattice of BaTiO3 to break the average symmetry inferred from X-ray powder diffraction analysis and permittivity measurements. In particular, Bi3+ with a stereochemically active lone-pair of electrons induces severe lattice strain and the coexistence of different local crystal symmetries over a wide temperature range, effectively controlling the physical properties, such as the temperature dependence of the permittivity and the Curie temperature. These results show that compositional gradients based in small variations of these two dopants could successfully explain the enhanced thermal stability of the permittivity in core-shell type ceramics, whereas the lower capacitance of the shell can also cap the maximum permittivity at the Curie temperature.

Original languageEnglish
Pages (from-to)5443-5451
Number of pages9
JournalJournal of Materials Chemistry / A
Issue number13
Publication statusPublished - 1 Jan 2018

ASJC Scopus subject areas

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)


Dive into the research topics of 'Remarkable impact of low BiYbO<sub>3</sub> doping levels on the local structure and phase transitions of BaTiO<sub>3</sub>'. Together they form a unique fingerprint.

Cite this