Protein repellent anti-coagulative mixed-charged cellulose derivative coatings

Matej Bračič*, Tamilselvan Mohan*, Rupert Kargl*, Thomas Grießer, Thomas Heinze, Karin Stana Kleinschek

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

This study describes the formation of cellulose based polyelectrolyte charge complexes on the surface of biodegradable polycaprolactone (PCL) thin films. Anionic sulphated cellulose (CS) and protonated cationic amino cellulose (AC) were used to form these complexes with a layer-by-layer coating technique. Both polyelectrolytes were analyzed by charge titration methods to elucidate their pH-value dependent protonation behavior. A quartz crystal microbalance with dissipation (QCM-D) in combination with X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to follow the growth, stability and water content of up to three AC/CS bi-layers in aqueous environment. This was combined with coagulation studies on one, two and three bilayers of AC/CS, measuring the thrombin formation rate and the total coagulation time of citrated blood plasma with QCM-D. Stable mixed charged bilayers could be prepared on PCL and significantly higher masses of AC than of CS were present in these complexes. Strong hydration due to the presence of ammonium and sulphate substituents on the backbone of cellulose led to a significant BSA repellent character of three bilayers of AC/CS coatings. The total plasma coagulation time was increased in comparison to neat PCL, indicating an anticoagulative nature of the coatings. Surprisingly, a coating solely composed of an AC layer significantly prolonged the total coagulation time on the surfaces although it did not prevent fibrinogen deposition. It is suggested that these cellulose derivative-based coatings can therefore be used to prevent unwanted BSA deposition and fibrin clot formation on PCL to foster its biomedical application.
Original languageEnglish
Article number117437
JournalCarbohydrate Polymers
Volume254
DOIs
Publication statusPublished - 15 Feb 2021

Keywords

  • Amino cellulose
  • Cellulose sulphate
  • Coagulation
  • Fibrinogen
  • Multilayer
  • Plasma
  • Polyelectrolyte
  • QCM-D
  • Serum albumin
  • XPS

ASJC Scopus subject areas

  • Materials Chemistry
  • Polymers and Plastics
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Protein repellent anti-coagulative mixed-charged cellulose derivative coatings'. Together they form a unique fingerprint.

Cite this