Operatoren in der Theorie der Lösungsdarstellungen partieller Differentialgleichungen zweiter und höherer Ordnung: Habilitationsschrift, TU-Graz, Institut für Mathematik (Analysis und Zahlentheorie)

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The transformation of elliptic differential equations (with 2 independent variables) into the complex yields formal hyperbolic differential equations. These are solved by the integral operators of I.N. Vekua or St. Bergman or M. Eichler and by the differential operator of K.W. Bauer. Furthermore, a transformation law of general Bergman kernels and of Bergman kernels with the first kind is derived. The integral operators of Eichler and Bergman and the differential operators are generalized for partial differential equations with more than 2 variables and higher order than 2.
Original languageEnglish
Title of host publicationSolving methods of partial differential equations with second and higher order. Habilitation
Pages1-234
Number of pages234
Publication statusPublished - 1989

Fingerprint Dive into the research topics of 'Operatoren in der Theorie der Lösungsdarstellungen partieller Differentialgleichungen zweiter und höherer Ordnung: Habilitationsschrift, TU-Graz, Institut für Mathematik (Analysis und Zahlentheorie)'. Together they form a unique fingerprint.

Cite this