### Abstract

Original language | English |
---|---|

Pages (from-to) | 364–379 |

Number of pages | 16 |

Journal | Studia Scientiarum Mathematicarum Hungarica |

Volume | 56 |

Issue number | 3 |

DOIs | |

Publication status | Published - 13 Oct 2019 |

### Fingerprint

### Keywords

- Padovan number
- Linear forms in logarithms
- Baker's method

### ASJC Scopus subject areas

- Algebra and Number Theory

### Fields of Expertise

- Information, Communication & Computing

### Cite this

**On the problem of Pillai with Padovan numbers and powers of 3.** / Ddamulira, Mahadi.

Research output: Contribution to journal › Article › Research › peer-review

*Studia Scientiarum Mathematicarum Hungarica*, vol. 56, no. 3, pp. 364–379. https://doi.org/10.1556/012.2019.56.3.1435

}

TY - JOUR

T1 - On the problem of Pillai with Padovan numbers and powers of 3

AU - Ddamulira, Mahadi

N1 - Studia Scientiarum Mathematicarum Hungarica, 56 (3) (2019), pp. 364-379

PY - 2019/10/13

Y1 - 2019/10/13

N2 - Let $\{P_n\_{n \ge 0}$ be the sequence of Padovan numbers defined by $P_0 = 0, P_1 = 1, P_2 = 1$, and $P_{n+3} = P_{n+1} + P_n$ for all $n \ge 0$. In this paper, we find all integers $c$ admitting at least two representations as a difference between a Padovan number and a power of $3$.

AB - Let $\{P_n\_{n \ge 0}$ be the sequence of Padovan numbers defined by $P_0 = 0, P_1 = 1, P_2 = 1$, and $P_{n+3} = P_{n+1} + P_n$ for all $n \ge 0$. In this paper, we find all integers $c$ admitting at least two representations as a difference between a Padovan number and a power of $3$.

KW - Padovan number

KW - Linear forms in logarithms

KW - Baker's method

U2 - 10.1556/012.2019.56.3.1435

DO - 10.1556/012.2019.56.3.1435

M3 - Article

VL - 56

SP - 364

EP - 379

JO - Studia Scientiarum Mathematicarum Hungarica

JF - Studia Scientiarum Mathematicarum Hungarica

SN - 0081-6906

IS - 3

ER -