New BRITE-Constellation observations of the roAp star α Cir

W. W. Weiss*, H. E. Fröhlich, T. Kallinger, R. Kuschnig, A. Popowicz, D. Baade, D. Buzasi, G. Handler, O. Kochukhov, O. Koudelka, A. F.J. Moffat, B. Pablo, G. Wade, K. Zwintz

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Context. Chemically peculiar (CP) stars with a measurable magnetic field comprise the group of mCP stars. The pulsating members define the subgroup of rapidly oscillating Ap (roAp) stars, of which α Cir is the brightest member. Hence, α Cir allows the application of challenging techniques, such as interferometry, very high temporal and spectral resolution photometry, and spectroscopy in a wide wavelength range, that have the potential to provide unique information about the structure and evolution of a star. Aims. Based on new photometry from BRITE-Constellation, obtained with blue and red filters, and on photometry from WIRE, SMEI, and TESS we attempt to determine the surface spot structure of α Cir and investigate pulsation frequencies. Methods. We used photometric surface imaging and frequency analyses and Bayesian techniques in order to quantitatively compare the probability of different models. Results. BRITE-Constellation photometry obtained from 2014 to 2016 is put in the context of space photometry obtained by WIRE, SMEI, and TESS. This provides improvements in the determination of the rotation period and surface features (three spots detected and a fourth one indicated). The main pulsation frequencies indicate two consecutive radial modes and one intermediate dipolar mode. Advantages and problems of the applied Bayesian technique are discussed.

Original languageEnglish
Article numberA64
JournalAstronomy and Astrophysics
Volume642
DOIs
Publication statusPublished - 1 Oct 2020

Keywords

  • Space vehicles: instruments
  • Stars: chemically peculiar
  • Stars: individual: α Cir
  • Stars: oscillations
  • Stars: rotation
  • Starspots

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'New BRITE-Constellation observations of the roAp star α Cir'. Together they form a unique fingerprint.

Cite this