Multipoint Interplanetary Coronal Mass Ejections Observed with Solar Orbiter, BepiColombo, Parker Solar Probe, Wind, and STEREO-A

Christian Möstl*, Andreas J. Weiss, Martin A. Reiss, Tanja Amerstorfer, Rachel L. Bailey, Jürgen Hinterreiter, Maike Bauer, David Barnes, Jackie A. Davies, Richard A. Harrison, Johan L. Freiherr Von Forstner, Emma E. Davies, Daniel Heyner, Tim Horbury, Stuart D. Bale

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We report the result of the first search for multipoint in situ and imaging observations of interplanetary coronal mass ejections (ICMEs) starting with the first Solar Orbiter (SolO) data in 2020 April-2021 April. A data exploration analysis is performed including visualizations of the magnetic-field and plasma observations made by the five spacecraft SolO, BepiColombo, Parker Solar Probe (PSP), Wind, and STEREO-A, in connection with coronagraph and heliospheric imaging observations from STEREO-A/SECCHI and SOHO/LASCO. We identify ICME events that could be unambiguously followed with the STEREO-A heliospheric imagers during their interplanetary propagation to their impact at the aforementioned spacecraft and look for events where the same ICME is seen in situ by widely separated spacecraft. We highlight two events: (1) a small streamer blowout CME on 2020 June 23 observed with a triple lineup by PSP, BepiColombo and Wind, guided by imaging with STEREO-A, and (2) the first fast CME of solar cycle 25 (˜1600 km s-1) on 2020 November 29 observed in situ by PSP and STEREO-A. These results are useful for modeling the magnetic structure of ICMEs and the interplanetary evolution and global shape of their flux ropes and shocks, and for studying the propagation of solar energetic particles. The combined data from these missions are already turning out to be a treasure trove for space-weather research and are expected to become even more valuable with an increasing number of ICME events expected during the rise and maximum of solar cycle 25.

Original languageEnglish
Article numberL6
JournalAstrophysical Journal Letters
Volume924
Issue number1
DOIs
Publication statusPublished - 1 Jan 2022

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Multipoint Interplanetary Coronal Mass Ejections Observed with Solar Orbiter, BepiColombo, Parker Solar Probe, Wind, and STEREO-A'. Together they form a unique fingerprint.

Cite this