## Abstract

Different operating conditions, like the axial prestress situation or the rotational speed, affect the characteristics of ball bearings. An efficient estimation of the bearing properties is necessary to describe the behavior of rotating systems, e.g. the critical speed of a rotor.

In this paper, an efficient method to estimate the model properties of ball bearings, with respect to the axial prestress situation in a non-rotating condition, is presented. The Numerical Assembly Technique is used to model the system, consisting of the bearing brackets, the ball bearings and the rotor. The generalized Polynomial Chaos Expansion is applied to estimate the material parameters of the rotor and the bearing properties. Two cases are analyzed. First, the rotor is analyzed with free boundaries to describe it, with a minimum of modelling errors. Second, the ball bearings are analyzed, based on measurements of the test rig. The measurements are taken from an experimental modal analysis. It is shown that the model parameters of the system are obtained in an efficient and precise way.

In this paper, an efficient method to estimate the model properties of ball bearings, with respect to the axial prestress situation in a non-rotating condition, is presented. The Numerical Assembly Technique is used to model the system, consisting of the bearing brackets, the ball bearings and the rotor. The generalized Polynomial Chaos Expansion is applied to estimate the material parameters of the rotor and the bearing properties. Two cases are analyzed. First, the rotor is analyzed with free boundaries to describe it, with a minimum of modelling errors. Second, the ball bearings are analyzed, based on measurements of the test rig. The measurements are taken from an experimental modal analysis. It is shown that the model parameters of the system are obtained in an efficient and precise way.

Original language | English |
---|---|

Title of host publication | Proceedings of SIRM 2021: The 14th International Conference on Dynamics of Rotating Machines |

Pages | 331 - 340 |

Number of pages | 10 |

ISBN (Electronic) | 978-83-88237-98-0 |

Publication status | Published - 1 Apr 2021 |

Event | 14th International Conference on Dynamics of Rotating Machines - Gdansk, Virtuell, Poland Duration: 17 Feb 2021 → 19 Feb 2021 Conference number: 14 https://sirm2021.pl/ |

### Conference

Conference | 14th International Conference on Dynamics of Rotating Machines |
---|---|

Abbreviated title | SIRM 2021 |

Country | Poland |

City | Virtuell |

Period | 17/02/21 → 19/02/21 |

Internet address |