Abstract
In this work, we propose a content-based recommendation approach to increase exposure to opposing beliefs and opinions. Our aim is to help provide users with more diverse viewpoints on issues, which are discussed in partisan groups from different perspectives. Since due to the backfire effect, people's original beliefs tend to strengthen when challenged with counter evidence, we need to expose them to opposing viewpoints at the right time. The preliminary work presented here describes our first step into this direction. As illustrative showcase, we take the political debate on Twitter around the presidency of Donald Trump.
Original language | English |
---|---|
Article number | arXiv:1809.03901 |
Journal | arXiv.org e-Print archive |
DOIs | |
Publication status | Published - 11 Sep 2018 |
Event | European Symposium on Societal Challenges in Computational Social Science: Bias and Discrimination - Köln, Germany Duration: 5 Dec 2018 → 7 Dec 2018 |
Keywords
- cs.IR
- cs.SI