Minimal Geometric Graph Representations of Order Types

Oswin Aichholzer, Martin Balko, Michael Hoffmann, Jan Kyncl, Wolfgang Mulzer, Irene Parada, Alexander Pilz, Manfred Scheucher, Pavel Valtr, Birgit Vogtenhuber, Emo Welzl

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Abstract

We consider the problem of characterizing small geometric graphs whose structure uniquely determines the order type of its vertex set. We describe a set of edges that prevent the order type from changing by continuous movement and identify properties of the resulting graphs.
Original languageEnglish
Title of host publication34th European Workshop on Computational Geometry (EuroCG '18)
Subtitle of host publicationExtended Abstracts
Place of PublicationBerlin, Germany
Pages21:1-21:6
Publication statusPublished - 2018
Event34th European Workshop on Computational Geometry - FU Berlin, Berlin, Germany
Duration: 21 Mar 201823 Mar 2018
https://conference.imp.fu-berlin.de/eurocg18/home

Conference

Conference34th European Workshop on Computational Geometry
Abbreviated titleEuroCG 2018
CountryGermany
CityBerlin
Period21/03/1823/03/18
Internet address

Cite this

Aichholzer, O., Balko, M., Hoffmann, M., Kyncl, J., Mulzer, W., Parada, I., ... Welzl, E. (2018). Minimal Geometric Graph Representations of Order Types. In 34th European Workshop on Computational Geometry (EuroCG '18): Extended Abstracts (pp. 21:1-21:6). Berlin, Germany.

Minimal Geometric Graph Representations of Order Types. / Aichholzer, Oswin; Balko, Martin; Hoffmann, Michael; Kyncl, Jan; Mulzer, Wolfgang; Parada, Irene; Pilz, Alexander; Scheucher, Manfred; Valtr, Pavel; Vogtenhuber, Birgit; Welzl, Emo.

34th European Workshop on Computational Geometry (EuroCG '18): Extended Abstracts. Berlin, Germany, 2018. p. 21:1-21:6.

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Aichholzer, O, Balko, M, Hoffmann, M, Kyncl, J, Mulzer, W, Parada, I, Pilz, A, Scheucher, M, Valtr, P, Vogtenhuber, B & Welzl, E 2018, Minimal Geometric Graph Representations of Order Types. in 34th European Workshop on Computational Geometry (EuroCG '18): Extended Abstracts. Berlin, Germany, pp. 21:1-21:6, 34th European Workshop on Computational Geometry, Berlin, Germany, 21/03/18.
Aichholzer O, Balko M, Hoffmann M, Kyncl J, Mulzer W, Parada I et al. Minimal Geometric Graph Representations of Order Types. In 34th European Workshop on Computational Geometry (EuroCG '18): Extended Abstracts. Berlin, Germany. 2018. p. 21:1-21:6
Aichholzer, Oswin ; Balko, Martin ; Hoffmann, Michael ; Kyncl, Jan ; Mulzer, Wolfgang ; Parada, Irene ; Pilz, Alexander ; Scheucher, Manfred ; Valtr, Pavel ; Vogtenhuber, Birgit ; Welzl, Emo. / Minimal Geometric Graph Representations of Order Types. 34th European Workshop on Computational Geometry (EuroCG '18): Extended Abstracts. Berlin, Germany, 2018. pp. 21:1-21:6
@inproceedings{0c3c4cd286a64b7396e3286d1bc482a8,
title = "Minimal Geometric Graph Representations of Order Types",
abstract = "We consider the problem of characterizing small geometric graphs whose structure uniquely determines the order type of its vertex set. We describe a set of edges that prevent the order type from changing by continuous movement and identify properties of the resulting graphs.",
author = "Oswin Aichholzer and Martin Balko and Michael Hoffmann and Jan Kyncl and Wolfgang Mulzer and Irene Parada and Alexander Pilz and Manfred Scheucher and Pavel Valtr and Birgit Vogtenhuber and Emo Welzl",
year = "2018",
language = "English",
pages = "21:1--21:6",
booktitle = "34th European Workshop on Computational Geometry (EuroCG '18)",

}

TY - GEN

T1 - Minimal Geometric Graph Representations of Order Types

AU - Aichholzer, Oswin

AU - Balko, Martin

AU - Hoffmann, Michael

AU - Kyncl, Jan

AU - Mulzer, Wolfgang

AU - Parada, Irene

AU - Pilz, Alexander

AU - Scheucher, Manfred

AU - Valtr, Pavel

AU - Vogtenhuber, Birgit

AU - Welzl, Emo

PY - 2018

Y1 - 2018

N2 - We consider the problem of characterizing small geometric graphs whose structure uniquely determines the order type of its vertex set. We describe a set of edges that prevent the order type from changing by continuous movement and identify properties of the resulting graphs.

AB - We consider the problem of characterizing small geometric graphs whose structure uniquely determines the order type of its vertex set. We describe a set of edges that prevent the order type from changing by continuous movement and identify properties of the resulting graphs.

M3 - Conference contribution

SP - 21:1-21:6

BT - 34th European Workshop on Computational Geometry (EuroCG '18)

CY - Berlin, Germany

ER -