Medical deep learning—A systematic meta-review

Jan Egger*, Christina Gsaxner, Antonio Pepe, Kelsey L. Pomykala, Frederic Jonske, Manuel Kurz, Jianning Li, Jens Kleesiek

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review


Deep learning has remarkably impacted several different scientific disciplines over the last few years. For example, in image processing and analysis, deep learning algorithms were able to outperform other cutting-edge methods. Additionally, deep learning has delivered state-of-the-art results in tasks like autonomous driving, outclassing previous attempts. There are even instances where deep learning outperformed humans, for example with object recognition and gaming. Deep learning is also showing vast potential in the medical domain. With the collection of large quantities of patient records and data, and a trend towards personalized treatments, there is a great need for automated and reliable processing and analysis of health information. Patient data is not only collected in clinical centers, like hospitals and private practices, but also by mobile healthcare apps or online websites. The abundance of collected patient data and the recent growth in the deep learning field has resulted in a large increase in research efforts. In Q2/2020, the search engine PubMed returned already over 11,000 results for the search term ‘deep learning’, and around 90% of these publications are from the last three years. However, even though PubMed represents the largest search engine in the medical field, it does not cover all medical-related publications. Hence, a complete overview of the field of ‘medical deep learning’ is almost impossible to obtain and acquiring a full overview of medical sub-fields is becoming increasingly more difficult. Nevertheless, several review and survey articles about medical deep learning have been published within the last few years. They focus, in general, on specific medical scenarios, like the analysis of medical images containing specific pathologies. With these surveys as a foundation, the aim of this article is to provide the first high-level, systematic meta-review of medical deep learning surveys.
Original languageEnglish
Article number106874
JournalComputer Methods and Programs in Biomedicine
Publication statusPublished - Jun 2022


  • Artificial neural networks
  • Data analysis
  • Deep learning
  • Detection
  • Generative adversarial networks
  • Image analysis
  • Machine learning
  • Medical image analysis
  • Medical image processing
  • Medical imaging
  • Meta-review
  • Meta-survey
  • Pathology
  • Patient data
  • PubMed
  • Registration
  • Review
  • Segmentation
  • Survey
  • Systematic

ASJC Scopus subject areas

  • Software
  • Health Informatics
  • Computer Science Applications


Dive into the research topics of 'Medical deep learning—A systematic meta-review'. Together they form a unique fingerprint.

Cite this