Learned Collaborative Stereo Refinement

Patrick Knöbelreiter, Thomas Pock

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this work, we propose a learning-based method to denoise and refine disparity maps of a given stereo method. The proposed variational network arises naturally from unrolling the iterates of a proximal gradient method applied to a variational energy defined in a joint disparity, color, and confidence image space. Our method allows to learn a robust collaborative regularizer leveraging the joint statistics of the color image, the confidence map and the disparity map. Due to the variational structure of our method, the individual steps can be easily visualized, thus enabling interpretability of the method. We can therefore provide interesting insights into how our method refines and denoises disparity maps. The efficiency of our method is demonstrated by the publicly available stereo benchmarks Middlebury 2014 and Kitti 2015.
Original languageEnglish
Title of host publicationGerman Conference on Pattern Recognition
Pages3-17
Publication statusPublished - 2019
Event41th German Conference on Pattern Recognition - Dortmund, Germany
Duration: 10 Sep 201913 Sep 2019
http://gcpr2019.tu-dortmund.de

Conference

Conference41th German Conference on Pattern Recognition
Abbreviated titleGCPR 2019
CountryGermany
CityDortmund
Period10/09/1913/09/19
Internet address

Fingerprint Dive into the research topics of 'Learned Collaborative Stereo Refinement'. Together they form a unique fingerprint.

Cite this