Ionic Conductivity of Nanocrystalline and Amorphous Li10GeP2S12: The Detrimental Impact of Local Disorder on Ion Transport

Lukas Schweiger, Katharina Hogrefe*, Bernhard Gadermaier, Jennifer L.M. Rupp, H. Martin R. Wilkening

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Solids with extraordinarily high Li+dynamics are key for high performance all-solid-state batteries. The thiophosphate Li10GeP2S12(LGPS) belongs to the best Li-ion conductors with an ionic conductivity exceeding 10 mS cm-1at ambient temperature. Recent molecular dynamics simulations performed by Dawson and Islam predict that the ionic conductivity of LGPS can be further enhanced by a factor of 3 if local disorder is introduced. As yet, no experimental evidence exists supporting this fascinating prediction. Here, we synthesized nanocrystalline LGPS by high-energy ball-milling and probed the Li+ion transport parameters. Broadband conductivity spectroscopy in combination with electric modulus measurements allowed us to precisely follow the changes in Li+dynamics. Surprisingly and against the behavior of other electrolytes, bulk ionic conductivity turned out to decrease with increasing milling time, finally leading to a reduction of σ20°Cby a factor of 10. 31P, 6Li NMR, and X-ray diffraction showed that ball-milling forms a structurally heterogeneous sample with nm-sized LGPS crystallites and amorphous material. At -135 °C, electrical relaxation in the amorphous regions is by 2 to 3 orders of magnitude slower. Careful separation of the amorphous and (nano)crystalline contributions to overall ion transport revealed that in both regions, Li+ion dynamics is slowed down compared to untreated LGPS. Hence, introducing defects into the LGPS bulk structure via ball-milling has a negative impact on ionic transport. We postulate that such a kind of structural disorder is detrimental to fast ion transport in materials whose transport properties rely on crystallographically well-defined diffusion pathways.

Original languageEnglish
Pages (from-to)9597-9609
Number of pages13
JournalJournal of the American Chemical Society
Volume144
Issue number22
DOIs
Publication statusPublished - 8 Jun 2022

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Ionic Conductivity of Nanocrystalline and Amorphous Li10GeP2S12: The Detrimental Impact of Local Disorder on Ion Transport'. Together they form a unique fingerprint.

Cite this