In-situ observation of lateral AlAs oxidation and dislocation formation in VCSELs

Robert Fabbro*, Raffaele A Coppeta, Michael Pusterhofer, Gernot Fasching, Thomas Haber, Werner Grogger

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Understanding how defects are generated and propagate during operation in modern vertical cavity surface emitting lasers (VCSEL) is an important challenge in order to develop the next generation of highly reliable semiconductor lasers. Undesired oxidation processes or performance degrading dislocation networks are typically investigated by conventional failure analysis after damage formation. In this works new approach to VCSEL failure analysis, oxide confined high power VCSELs are investigated in-situ at elevated temperatures in a transmission electron microscope. At high temperatures, lateral oxidation of the current confinement layer as well as formation and propagation of dislocations are observed. The experimental results may deepen the understanding of defect generation in VCSELs during stress tests or standard operating conditions. On the other hand, in-situ TEM proofed to be a promising technique to be utilised in future VCSEL failure analysis, possibly leading to the development of improved defect models and increased VCSEL reliability.
Original languageEnglish
Article number103264
Number of pages7
JournalMicron
Volume158
DOIs
Publication statusPublished - 2022

Keywords

  • AlAs oxidation
  • Dislocation formation
  • In-situ STEM
  • VCSEL

ASJC Scopus subject areas

  • General Materials Science
  • Physics and Astronomy(all)
  • Materials Science(all)
  • Structural Biology
  • Cell Biology

Fields of Expertise

  • Advanced Materials Science

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)

Fingerprint

Dive into the research topics of 'In-situ observation of lateral AlAs oxidation and dislocation formation in VCSELs'. Together they form a unique fingerprint.

Cite this