Improved Measurement of the Hydrogen $1S--2S$ Transition Frequency

Christian G. Parthey, Arthur Matveev, Janis Alnis, Birgitta Bernhardt, Axel Beyer, Ronald Holzwarth, Aliaksei Maistrou, Randolf Pohl, Katharina Predehl, Thomas Udem, Tobias Wilken, Nikolai Kolachevsky, Michel Abgrall, Daniele Rovera, Christophe Salomon, Philippe Laurent, Theodor W. Hänsch

Research output: Contribution to journalArticleResearchpeer-review

Abstract

We have measured the 1S–2S transition frequency in atomic hydrogen via two-photon spectroscopy on a 5.8 K atomic beam. We obtain f1S–2S=2 466 061 413 187 035 (10)   Hz for the hyperfine centroid, in agreement with, but 3.3 times better than the previous result [M. Fischer et al., Phys. Rev. Lett. 92, 230802 (2004)]. The improvement to a fractional frequency uncertainty of 4.2×10−15 arises mainly from an improved stability of the spectroscopy laser, and a better determination of the main systematic uncertainties, namely, the second order Doppler and ac and dc Stark shifts. The probe laser frequency was phase coherently linked to the mobile cesium fountain clock FOM via a frequency comb.
Original languageEnglish
Pages (from-to)203001
Number of pages5
JournalPhysical Review Letters
Volume107
DOIs
Publication statusPublished - 1 Nov 2011
Externally publishedYes

Fields of Expertise

  • Advanced Materials Science

Cite this

Parthey, C. G., Matveev, A., Alnis, J., Bernhardt, B., Beyer, A., Holzwarth, R., ... Hänsch, T. W. (2011). Improved Measurement of the Hydrogen $1S--2S$ Transition Frequency. Physical Review Letters, 107, 203001. https://doi.org/10.1103/PhysRevLett.107.203001

Improved Measurement of the Hydrogen $1S--2S$ Transition Frequency. / Parthey, Christian G.; Matveev, Arthur; Alnis, Janis; Bernhardt, Birgitta; Beyer, Axel; Holzwarth, Ronald; Maistrou, Aliaksei; Pohl, Randolf; Predehl, Katharina; Udem, Thomas; Wilken, Tobias; Kolachevsky, Nikolai; Abgrall, Michel; Rovera, Daniele; Salomon, Christophe; Laurent, Philippe; Hänsch, Theodor W.

In: Physical Review Letters, Vol. 107, 01.11.2011, p. 203001.

Research output: Contribution to journalArticleResearchpeer-review

Parthey, CG, Matveev, A, Alnis, J, Bernhardt, B, Beyer, A, Holzwarth, R, Maistrou, A, Pohl, R, Predehl, K, Udem, T, Wilken, T, Kolachevsky, N, Abgrall, M, Rovera, D, Salomon, C, Laurent, P & Hänsch, TW 2011, 'Improved Measurement of the Hydrogen $1S--2S$ Transition Frequency' Physical Review Letters, vol. 107, pp. 203001. https://doi.org/10.1103/PhysRevLett.107.203001
Parthey, Christian G. ; Matveev, Arthur ; Alnis, Janis ; Bernhardt, Birgitta ; Beyer, Axel ; Holzwarth, Ronald ; Maistrou, Aliaksei ; Pohl, Randolf ; Predehl, Katharina ; Udem, Thomas ; Wilken, Tobias ; Kolachevsky, Nikolai ; Abgrall, Michel ; Rovera, Daniele ; Salomon, Christophe ; Laurent, Philippe ; Hänsch, Theodor W. / Improved Measurement of the Hydrogen $1S--2S$ Transition Frequency. In: Physical Review Letters. 2011 ; Vol. 107. pp. 203001.
@article{c280d0d4f3824ef791b3ec7b4d159771,
title = "Improved Measurement of the Hydrogen $1S--2S$ Transition Frequency",
abstract = "We have measured the 1S–2S transition frequency in atomic hydrogen via two-photon spectroscopy on a 5.8 K atomic beam. We obtain f1S–2S=2 466 061 413 187 035 (10)   Hz for the hyperfine centroid, in agreement with, but 3.3 times better than the previous result [M. Fischer et al., Phys. Rev. Lett. 92, 230802 (2004)]. The improvement to a fractional frequency uncertainty of 4.2×10−15 arises mainly from an improved stability of the spectroscopy laser, and a better determination of the main systematic uncertainties, namely, the second order Doppler and ac and dc Stark shifts. The probe laser frequency was phase coherently linked to the mobile cesium fountain clock FOM via a frequency comb.",
author = "Parthey, {Christian G.} and Arthur Matveev and Janis Alnis and Birgitta Bernhardt and Axel Beyer and Ronald Holzwarth and Aliaksei Maistrou and Randolf Pohl and Katharina Predehl and Thomas Udem and Tobias Wilken and Nikolai Kolachevsky and Michel Abgrall and Daniele Rovera and Christophe Salomon and Philippe Laurent and H{\"a}nsch, {Theodor W.}",
year = "2011",
month = "11",
day = "1",
doi = "10.1103/PhysRevLett.107.203001",
language = "English",
volume = "107",
pages = "203001",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",

}

TY - JOUR

T1 - Improved Measurement of the Hydrogen $1S--2S$ Transition Frequency

AU - Parthey, Christian G.

AU - Matveev, Arthur

AU - Alnis, Janis

AU - Bernhardt, Birgitta

AU - Beyer, Axel

AU - Holzwarth, Ronald

AU - Maistrou, Aliaksei

AU - Pohl, Randolf

AU - Predehl, Katharina

AU - Udem, Thomas

AU - Wilken, Tobias

AU - Kolachevsky, Nikolai

AU - Abgrall, Michel

AU - Rovera, Daniele

AU - Salomon, Christophe

AU - Laurent, Philippe

AU - Hänsch, Theodor W.

PY - 2011/11/1

Y1 - 2011/11/1

N2 - We have measured the 1S–2S transition frequency in atomic hydrogen via two-photon spectroscopy on a 5.8 K atomic beam. We obtain f1S–2S=2 466 061 413 187 035 (10)   Hz for the hyperfine centroid, in agreement with, but 3.3 times better than the previous result [M. Fischer et al., Phys. Rev. Lett. 92, 230802 (2004)]. The improvement to a fractional frequency uncertainty of 4.2×10−15 arises mainly from an improved stability of the spectroscopy laser, and a better determination of the main systematic uncertainties, namely, the second order Doppler and ac and dc Stark shifts. The probe laser frequency was phase coherently linked to the mobile cesium fountain clock FOM via a frequency comb.

AB - We have measured the 1S–2S transition frequency in atomic hydrogen via two-photon spectroscopy on a 5.8 K atomic beam. We obtain f1S–2S=2 466 061 413 187 035 (10)   Hz for the hyperfine centroid, in agreement with, but 3.3 times better than the previous result [M. Fischer et al., Phys. Rev. Lett. 92, 230802 (2004)]. The improvement to a fractional frequency uncertainty of 4.2×10−15 arises mainly from an improved stability of the spectroscopy laser, and a better determination of the main systematic uncertainties, namely, the second order Doppler and ac and dc Stark shifts. The probe laser frequency was phase coherently linked to the mobile cesium fountain clock FOM via a frequency comb.

U2 - 10.1103/PhysRevLett.107.203001

DO - 10.1103/PhysRevLett.107.203001

M3 - Article

VL - 107

SP - 203001

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

ER -