Forensic age estimation by morphometric analysis of the manubrium from 3D MR images

Naira P Martínez Vera, Johannes Höller, Thomas Widek, Thomas Ehammer, Martin Urschler

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Forensic age estimation research based on skeletal structures focuses on patterns of growth and development using different bones. In this work, our aim was to study growth-related evolution of the manubrium in living adolescents and young adults using magnetic resonance imaging (MRI), which is an image acquisition modality that does not involve ionizing radiation. In a first step, individual manubrium and subject features were correlated with age, which confirmed a statistically significant change of manubrium volume (Mvol:p<0.01, R(2)¯=0.50) and surface area (Msur:p<0.01, R(2)¯=0.53) for the studied age range. Additionally, shapes of the manubria were for the first time investigated using principal component analysis. The decomposition of the data in principal components allowed to analyse the contribution of each component to total shape variation. With 13 principal components, ∼96% of shape variation could be described (Mshp:p<0.01, R(2)¯=0.60). Multiple linear regression analysis modelled the relationship between the statistically best correlated variables and age. Models including manubrium shape, volume or surface area divided by the height of the subject (Y∼MshpMsur/Sh:p<0.01, R(2)¯=0.71; Y∼MshpMvol/Sh:p<0.01, R(2)¯=0.72) presented a standard error of estimate of two years. In order to estimate the accuracy of these two manubrium-based age estimation models, cross validation experiments predicting age on held-out test sets were performed. Median absolute difference of predicted and known chronological age was 1.18 years for the best performing model (Y∼MshpMsur/Sh:p<0.01, Rp(2)=0.67). In conclusion, despite limitations in determining legal majority age, manubrium morphometry analysis presented statistically significant results for skeletal age estimation, which indicates that this bone structure may be considered as a new candidate in multi-factorial MRI-based age estimation.

Original languageEnglish
Pages (from-to)21-29
Number of pages9
JournalForensic science international
Volume277
DOIs
Publication statusPublished - 12 May 2017

Fingerprint

Manubrium
Magnetic Resonance Imaging
Bone and Bones
Ionizing Radiation
Principal Component Analysis
Growth and Development
Young Adult
Linear Models
Regression Analysis

Fields of Expertise

  • Information, Communication & Computing

Cooperations

  • BioTechMed-Graz

Cite this

Forensic age estimation by morphometric analysis of the manubrium from 3D MR images. / Martínez Vera, Naira P; Höller, Johannes; Widek, Thomas; Ehammer, Thomas; Urschler, Martin.

In: Forensic science international, Vol. 277, 12.05.2017, p. 21-29.

Research output: Contribution to journalArticleResearchpeer-review

Martínez Vera, Naira P ; Höller, Johannes ; Widek, Thomas ; Ehammer, Thomas ; Urschler, Martin. / Forensic age estimation by morphometric analysis of the manubrium from 3D MR images. In: Forensic science international. 2017 ; Vol. 277. pp. 21-29.
@article{7e3f883fd3b0494cb7ab4a8b9244f12e,
title = "Forensic age estimation by morphometric analysis of the manubrium from 3D MR images",
abstract = "Forensic age estimation research based on skeletal structures focuses on patterns of growth and development using different bones. In this work, our aim was to study growth-related evolution of the manubrium in living adolescents and young adults using magnetic resonance imaging (MRI), which is an image acquisition modality that does not involve ionizing radiation. In a first step, individual manubrium and subject features were correlated with age, which confirmed a statistically significant change of manubrium volume (Mvol:p<0.01, R(2)¯=0.50) and surface area (Msur:p<0.01, R(2)¯=0.53) for the studied age range. Additionally, shapes of the manubria were for the first time investigated using principal component analysis. The decomposition of the data in principal components allowed to analyse the contribution of each component to total shape variation. With 13 principal components, ∼96{\%} of shape variation could be described (Mshp:p<0.01, R(2)¯=0.60). Multiple linear regression analysis modelled the relationship between the statistically best correlated variables and age. Models including manubrium shape, volume or surface area divided by the height of the subject (Y∼MshpMsur/Sh:p<0.01, R(2)¯=0.71; Y∼MshpMvol/Sh:p<0.01, R(2)¯=0.72) presented a standard error of estimate of two years. In order to estimate the accuracy of these two manubrium-based age estimation models, cross validation experiments predicting age on held-out test sets were performed. Median absolute difference of predicted and known chronological age was 1.18 years for the best performing model (Y∼MshpMsur/Sh:p<0.01, Rp(2)=0.67). In conclusion, despite limitations in determining legal majority age, manubrium morphometry analysis presented statistically significant results for skeletal age estimation, which indicates that this bone structure may be considered as a new candidate in multi-factorial MRI-based age estimation.",
author = "{Mart{\'i}nez Vera}, {Naira P} and Johannes H{\"o}ller and Thomas Widek and Thomas Ehammer and Martin Urschler",
note = "Copyright {\circledC} 2017 Elsevier B.V. All rights reserved.",
year = "2017",
month = "5",
day = "12",
doi = "10.1016/j.forsciint.2017.05.005",
language = "English",
volume = "277",
pages = "21--29",
journal = "Forensic science international",
issn = "0379-0738",
publisher = "Elsevier Ireland Ltd",

}

TY - JOUR

T1 - Forensic age estimation by morphometric analysis of the manubrium from 3D MR images

AU - Martínez Vera, Naira P

AU - Höller, Johannes

AU - Widek, Thomas

AU - Ehammer, Thomas

AU - Urschler, Martin

N1 - Copyright © 2017 Elsevier B.V. All rights reserved.

PY - 2017/5/12

Y1 - 2017/5/12

N2 - Forensic age estimation research based on skeletal structures focuses on patterns of growth and development using different bones. In this work, our aim was to study growth-related evolution of the manubrium in living adolescents and young adults using magnetic resonance imaging (MRI), which is an image acquisition modality that does not involve ionizing radiation. In a first step, individual manubrium and subject features were correlated with age, which confirmed a statistically significant change of manubrium volume (Mvol:p<0.01, R(2)¯=0.50) and surface area (Msur:p<0.01, R(2)¯=0.53) for the studied age range. Additionally, shapes of the manubria were for the first time investigated using principal component analysis. The decomposition of the data in principal components allowed to analyse the contribution of each component to total shape variation. With 13 principal components, ∼96% of shape variation could be described (Mshp:p<0.01, R(2)¯=0.60). Multiple linear regression analysis modelled the relationship between the statistically best correlated variables and age. Models including manubrium shape, volume or surface area divided by the height of the subject (Y∼MshpMsur/Sh:p<0.01, R(2)¯=0.71; Y∼MshpMvol/Sh:p<0.01, R(2)¯=0.72) presented a standard error of estimate of two years. In order to estimate the accuracy of these two manubrium-based age estimation models, cross validation experiments predicting age on held-out test sets were performed. Median absolute difference of predicted and known chronological age was 1.18 years for the best performing model (Y∼MshpMsur/Sh:p<0.01, Rp(2)=0.67). In conclusion, despite limitations in determining legal majority age, manubrium morphometry analysis presented statistically significant results for skeletal age estimation, which indicates that this bone structure may be considered as a new candidate in multi-factorial MRI-based age estimation.

AB - Forensic age estimation research based on skeletal structures focuses on patterns of growth and development using different bones. In this work, our aim was to study growth-related evolution of the manubrium in living adolescents and young adults using magnetic resonance imaging (MRI), which is an image acquisition modality that does not involve ionizing radiation. In a first step, individual manubrium and subject features were correlated with age, which confirmed a statistically significant change of manubrium volume (Mvol:p<0.01, R(2)¯=0.50) and surface area (Msur:p<0.01, R(2)¯=0.53) for the studied age range. Additionally, shapes of the manubria were for the first time investigated using principal component analysis. The decomposition of the data in principal components allowed to analyse the contribution of each component to total shape variation. With 13 principal components, ∼96% of shape variation could be described (Mshp:p<0.01, R(2)¯=0.60). Multiple linear regression analysis modelled the relationship between the statistically best correlated variables and age. Models including manubrium shape, volume or surface area divided by the height of the subject (Y∼MshpMsur/Sh:p<0.01, R(2)¯=0.71; Y∼MshpMvol/Sh:p<0.01, R(2)¯=0.72) presented a standard error of estimate of two years. In order to estimate the accuracy of these two manubrium-based age estimation models, cross validation experiments predicting age on held-out test sets were performed. Median absolute difference of predicted and known chronological age was 1.18 years for the best performing model (Y∼MshpMsur/Sh:p<0.01, Rp(2)=0.67). In conclusion, despite limitations in determining legal majority age, manubrium morphometry analysis presented statistically significant results for skeletal age estimation, which indicates that this bone structure may be considered as a new candidate in multi-factorial MRI-based age estimation.

U2 - 10.1016/j.forsciint.2017.05.005

DO - 10.1016/j.forsciint.2017.05.005

M3 - Article

VL - 277

SP - 21

EP - 29

JO - Forensic science international

JF - Forensic science international

SN - 0379-0738

ER -