Femtosecond wave-packet revivals in ozone

T. Latka, V. Shirvanyan, M. Ossiander, O. Razskazovskaya, A. Guggenmos, M. Jobst, M. Fieß, S. Holzner, A. Sommer, M. Schultze, C. Jakubeit, J. Riemensberger, B. Bernhardt, W. Helml, F. Gatti, B. Lasorne, D. Lauvergnat, P. Decleva, G. J. Halász, Á. Vibók & 1 others R. Kienberger

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Photodissociation of ozone following absorption of biologically harmful solar ultraviolet radiation is the key mechanism for the life protecting properties of the atmospheric ozone layer. Even though ozone photolysis is described successfully by post-Hartree-Fock theory, it has evaded direct experimental access so far, due to the unavailability of intense ultrashort deep ultraviolet radiation sources. The rapidity of ozone photolysis with predicted values of a few tens of femtoseconds renders both ultrashort pump and probe pulses indispensable to capture this manifestation of ultrafast chemistry. Here, we present the observation of femtosecond time-scale electronic and nuclear dynamics of ozone triggered by ∼10-fs, ∼2-μJ deep ultraviolet pulses and, in contrast to conventional attochemistry experiments, probed by extreme ultraviolet isolated pulses. An electronic wave packet is first created. We follow the splitting of the excited B-state related nuclear wave packet into a path leading to molecular fragmentation and an oscillating path, revolving around the Franck-Condon point with 22-fs wave-packet revival time. Full quantum-mechanical ab initio multiconfigurational time-dependent Hartree simulations support this interpretation.

Original languageEnglish
Article number063405
Pages (from-to)063405
Number of pages1
JournalPhysical Review / B
Volume99
Issue number6
DOIs
Publication statusPublished - 1 Jun 2019

Fingerprint

Wave packets
Ozone
wave packets
ozone
Photolysis
Ultraviolet radiation
ultraviolet radiation
photolysis
Stratospheric Ozone
pulses
Electronic scales
Ozone layer
ozonosphere
Photodissociation
Solar radiation
radiation sources
electronics
photodissociation
Light sources
fragmentation

Fields of Expertise

  • Advanced Materials Science

Cite this

Latka, T., Shirvanyan, V., Ossiander, M., Razskazovskaya, O., Guggenmos, A., Jobst, M., ... Kienberger, R. (2019). Femtosecond wave-packet revivals in ozone. Physical Review / B, 99(6), 063405. [063405]. https://doi.org/10.1103/PhysRevA.99.063405

Femtosecond wave-packet revivals in ozone. / Latka, T.; Shirvanyan, V.; Ossiander, M.; Razskazovskaya, O.; Guggenmos, A.; Jobst, M.; Fieß, M.; Holzner, S.; Sommer, A.; Schultze, M.; Jakubeit, C.; Riemensberger, J.; Bernhardt, B.; Helml, W.; Gatti, F.; Lasorne, B.; Lauvergnat, D.; Decleva, P.; Halász, G. J.; Vibók, Á.; Kienberger, R.

In: Physical Review / B, Vol. 99, No. 6, 063405, 01.06.2019, p. 063405.

Research output: Contribution to journalArticleResearchpeer-review

Latka, T, Shirvanyan, V, Ossiander, M, Razskazovskaya, O, Guggenmos, A, Jobst, M, Fieß, M, Holzner, S, Sommer, A, Schultze, M, Jakubeit, C, Riemensberger, J, Bernhardt, B, Helml, W, Gatti, F, Lasorne, B, Lauvergnat, D, Decleva, P, Halász, GJ, Vibók, Á & Kienberger, R 2019, 'Femtosecond wave-packet revivals in ozone' Physical Review / B, vol. 99, no. 6, 063405, pp. 063405. https://doi.org/10.1103/PhysRevA.99.063405
Latka T, Shirvanyan V, Ossiander M, Razskazovskaya O, Guggenmos A, Jobst M et al. Femtosecond wave-packet revivals in ozone. Physical Review / B. 2019 Jun 1;99(6):063405. 063405. https://doi.org/10.1103/PhysRevA.99.063405
Latka, T. ; Shirvanyan, V. ; Ossiander, M. ; Razskazovskaya, O. ; Guggenmos, A. ; Jobst, M. ; Fieß, M. ; Holzner, S. ; Sommer, A. ; Schultze, M. ; Jakubeit, C. ; Riemensberger, J. ; Bernhardt, B. ; Helml, W. ; Gatti, F. ; Lasorne, B. ; Lauvergnat, D. ; Decleva, P. ; Halász, G. J. ; Vibók, Á. ; Kienberger, R. / Femtosecond wave-packet revivals in ozone. In: Physical Review / B. 2019 ; Vol. 99, No. 6. pp. 063405.
@article{2f411ecc82ec43cda943bc729edd8da9,
title = "Femtosecond wave-packet revivals in ozone",
abstract = "Photodissociation of ozone following absorption of biologically harmful solar ultraviolet radiation is the key mechanism for the life protecting properties of the atmospheric ozone layer. Even though ozone photolysis is described successfully by post-Hartree-Fock theory, it has evaded direct experimental access so far, due to the unavailability of intense ultrashort deep ultraviolet radiation sources. The rapidity of ozone photolysis with predicted values of a few tens of femtoseconds renders both ultrashort pump and probe pulses indispensable to capture this manifestation of ultrafast chemistry. Here, we present the observation of femtosecond time-scale electronic and nuclear dynamics of ozone triggered by ∼10-fs, ∼2-μJ deep ultraviolet pulses and, in contrast to conventional attochemistry experiments, probed by extreme ultraviolet isolated pulses. An electronic wave packet is first created. We follow the splitting of the excited B-state related nuclear wave packet into a path leading to molecular fragmentation and an oscillating path, revolving around the Franck-Condon point with 22-fs wave-packet revival time. Full quantum-mechanical ab initio multiconfigurational time-dependent Hartree simulations support this interpretation.",
author = "T. Latka and V. Shirvanyan and M. Ossiander and O. Razskazovskaya and A. Guggenmos and M. Jobst and M. Fie{\ss} and S. Holzner and A. Sommer and M. Schultze and C. Jakubeit and J. Riemensberger and B. Bernhardt and W. Helml and F. Gatti and B. Lasorne and D. Lauvergnat and P. Decleva and Hal{\'a}sz, {G. J.} and {\'A}. Vib{\'o}k and R. Kienberger",
year = "2019",
month = "6",
day = "1",
doi = "10.1103/PhysRevA.99.063405",
language = "English",
volume = "99",
pages = "063405",
journal = "Physical Review / B",
issn = "1098-0121",
publisher = "American Physical Society",
number = "6",

}

TY - JOUR

T1 - Femtosecond wave-packet revivals in ozone

AU - Latka, T.

AU - Shirvanyan, V.

AU - Ossiander, M.

AU - Razskazovskaya, O.

AU - Guggenmos, A.

AU - Jobst, M.

AU - Fieß, M.

AU - Holzner, S.

AU - Sommer, A.

AU - Schultze, M.

AU - Jakubeit, C.

AU - Riemensberger, J.

AU - Bernhardt, B.

AU - Helml, W.

AU - Gatti, F.

AU - Lasorne, B.

AU - Lauvergnat, D.

AU - Decleva, P.

AU - Halász, G. J.

AU - Vibók, Á.

AU - Kienberger, R.

PY - 2019/6/1

Y1 - 2019/6/1

N2 - Photodissociation of ozone following absorption of biologically harmful solar ultraviolet radiation is the key mechanism for the life protecting properties of the atmospheric ozone layer. Even though ozone photolysis is described successfully by post-Hartree-Fock theory, it has evaded direct experimental access so far, due to the unavailability of intense ultrashort deep ultraviolet radiation sources. The rapidity of ozone photolysis with predicted values of a few tens of femtoseconds renders both ultrashort pump and probe pulses indispensable to capture this manifestation of ultrafast chemistry. Here, we present the observation of femtosecond time-scale electronic and nuclear dynamics of ozone triggered by ∼10-fs, ∼2-μJ deep ultraviolet pulses and, in contrast to conventional attochemistry experiments, probed by extreme ultraviolet isolated pulses. An electronic wave packet is first created. We follow the splitting of the excited B-state related nuclear wave packet into a path leading to molecular fragmentation and an oscillating path, revolving around the Franck-Condon point with 22-fs wave-packet revival time. Full quantum-mechanical ab initio multiconfigurational time-dependent Hartree simulations support this interpretation.

AB - Photodissociation of ozone following absorption of biologically harmful solar ultraviolet radiation is the key mechanism for the life protecting properties of the atmospheric ozone layer. Even though ozone photolysis is described successfully by post-Hartree-Fock theory, it has evaded direct experimental access so far, due to the unavailability of intense ultrashort deep ultraviolet radiation sources. The rapidity of ozone photolysis with predicted values of a few tens of femtoseconds renders both ultrashort pump and probe pulses indispensable to capture this manifestation of ultrafast chemistry. Here, we present the observation of femtosecond time-scale electronic and nuclear dynamics of ozone triggered by ∼10-fs, ∼2-μJ deep ultraviolet pulses and, in contrast to conventional attochemistry experiments, probed by extreme ultraviolet isolated pulses. An electronic wave packet is first created. We follow the splitting of the excited B-state related nuclear wave packet into a path leading to molecular fragmentation and an oscillating path, revolving around the Franck-Condon point with 22-fs wave-packet revival time. Full quantum-mechanical ab initio multiconfigurational time-dependent Hartree simulations support this interpretation.

UR - http://www.scopus.com/inward/record.url?scp=85067333981&partnerID=8YFLogxK

U2 - 10.1103/PhysRevA.99.063405

DO - 10.1103/PhysRevA.99.063405

M3 - Article

VL - 99

SP - 063405

JO - Physical Review / B

JF - Physical Review / B

SN - 1098-0121

IS - 6

M1 - 063405

ER -