Experimental study on high-purity hydrogen generation from synthetic biogas in a 10 kW fixed-bed chemical looping system

Sebastian Bock, Robert Zacharias, Viktor Hacker

Research output: Contribution to journalArticlepeer-review

Abstract

The utilization of locally available renewable resources is crucial for the creation of a sustainable energy system in the future. Biogas, a product of the anaerobic digestion of biogenic residues, exhibits great potential as feedstock to generate hydrogen for fuel cell mobility applications. A 10 kW fixed-bed chemical looping research system, to-date the largest in the world, was operated to proof the applicability of this versatile process for synthetic biogas utilization. In this experimental study, the focus was laid on examining the influence of different operating parameters (biogas composition, steam co-feeding, process temperature) on the attainable hydrogen purity and system efficiency. The generated hydrogen, between 90 to 230 g per cycle, was characterized online by ppm-range gas analysis and exhibited a product gas quality between 99.8% and 99.998%. The difference observed is attributed to carbon deposition if synthetic biogas with an increased share of carbon dioxide was supplied. This study involved the longest uninterrupted period of operation of a lab prototype system for fixed-bed chemical looping with 250 hours of time-on-stream, four months of discontinuous service and 50 consecutive experimental cycles.
Original languageEnglish
Number of pages10
JournalRSC Advances
Volume2019
DOIs
Publication statusPublished - 25 Jul 2019

Fields of Expertise

  • Mobility & Production

Fingerprint

Dive into the research topics of 'Experimental study on high-purity hydrogen generation from synthetic biogas in a 10 kW fixed-bed chemical looping system'. Together they form a unique fingerprint.

Cite this