Evaluation of CME Arrival Prediction Using Ensemble Modeling Based on Heliospheric Imaging Observations

Tanja Amerstorfer*, Jürgen Hinterreiter, Martin Reiß, Christian Möstl, Jackie Davies, Rachel Louise Bailey, Andreas Jeffrey Weiss, Mateja Dumbović, Maike Bauer, U. Amerstorfer, Richard A. Harrison

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In this study, we evaluate a coronal mass ejection (CME) arrival prediction tool that utilizes the wide‐angle observations made by STEREO's heliospheric imagers (HI). The unsurpassable advantage of these imagers is the possibility to observe the evolution and propagation of a CME from close to the Sun out to 1 AU and beyond. We believe that by exploiting this capability, instead of relying on coronagraph observations only, it is possible to improve today's CME arrival time predictions. The ELlipse Evolution model based on HI observations (ELEvoHI) assumes that the CME frontal shape within the ecliptic plane is an ellipse and allows the CME to adjust to the ambient solar wind speed; that is, it is drag based. ELEvoHI is used to perform ensemble simulations by varying the CME frontal shape within given boundary conditions that are consistent with the observations made by HI. In this work, we evaluate different setups of the model by performing hindcasts for 15 well‐defined isolated CMEs that occurred when STEREO was near L4/5, between the end of 2008 and the beginning of 2011. In this way, we find a mean absolute error of between 6.2 ± 7.9 and 9.9 ± 13 hr depending on the model setup used. ELEvoHI is specified for using data from future space weather missions carrying HIs located at L5 or L1. It can also be used with near‐real‐time STEREO‐A HI beacon data to provide CME arrival predictions during the next ∼7 years when STEREO‐A is observing the Sun‐Earth space.
Original languageEnglish
Article numbere2020SW002553
JournalSpace Weather
Volume19
Issue number1
Early online date1 Sept 2020
DOIs
Publication statusPublished - Jan 2021

Keywords

  • coronal mass ejections
  • ensemble modeling
  • heliospheric imaging
  • space weather prediction

ASJC Scopus subject areas

  • Atmospheric Science

Cite this