Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal–Organic Frameworks

Weibin Liang, Huoshu Xu, Francesco Carraro, Natasha K. Maddigan, Qiaowei Li, Stephen G. Bell, David M. Huang, Andrew Tarzia, Marcello B. Solomon, Heinz Amenitsch, Lisa Vaccari, Christopher J. Sumby, Paolo Falcaro, Christian J. Doonan

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Encapsulation of biomacromolecules in metal–organic frameworks (MOFs) can preserve biological functionality in harsh environments. Despite the success of this approach, termed biomimietic mineralization, limited consideration has been given to the chemistry of the MOF coating. Here we show that enzymes encapsulated within hydrophilic MAF-7 or ZIF-90 retain enzymatic activity upon encapsulation and when exposed to high temperatures, denaturing or proteolytic agents, and organic solvents, whereas hydrophobic ZIF-8 affords inactive catalase and negligible protection to urease.
Original languageEnglish
Pages (from-to)2348-2355
JournalJournal of the American Chemical Society
Volume141
Issue number6
DOIs
Publication statusPublished - 12 Jan 2019

Fingerprint

Urease
Encapsulation
Catalase
Enzymes
Temperature
Organic solvents
Coatings

Keywords

  • MOFs
  • biomineralization
  • Enzyme immobilization
  • encapsulation

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry
  • Catalysis
  • Colloid and Surface Chemistry

Fields of Expertise

  • Advanced Materials Science

Cite this

Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal–Organic Frameworks. / Liang, Weibin; Xu, Huoshu; Carraro, Francesco; Maddigan, Natasha K.; Li, Qiaowei; Bell, Stephen G.; Huang, David M.; Tarzia, Andrew; Solomon, Marcello B.; Amenitsch, Heinz; Vaccari, Lisa; Sumby, Christopher J.; Falcaro, Paolo; Doonan, Christian J.

In: Journal of the American Chemical Society, Vol. 141, No. 6, 12.01.2019, p. 2348-2355.

Research output: Contribution to journalArticleResearchpeer-review

Liang, W, Xu, H, Carraro, F, Maddigan, NK, Li, Q, Bell, SG, Huang, DM, Tarzia, A, Solomon, MB, Amenitsch, H, Vaccari, L, Sumby, CJ, Falcaro, P & Doonan, CJ 2019, 'Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal–Organic Frameworks' Journal of the American Chemical Society, vol. 141, no. 6, pp. 2348-2355. https://doi.org/10.1021/jacs.8b10302
Liang, Weibin ; Xu, Huoshu ; Carraro, Francesco ; Maddigan, Natasha K. ; Li, Qiaowei ; Bell, Stephen G. ; Huang, David M. ; Tarzia, Andrew ; Solomon, Marcello B. ; Amenitsch, Heinz ; Vaccari, Lisa ; Sumby, Christopher J. ; Falcaro, Paolo ; Doonan, Christian J. / Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal–Organic Frameworks. In: Journal of the American Chemical Society. 2019 ; Vol. 141, No. 6. pp. 2348-2355.
@article{d9b68fa5bf7e42b3bf6fa5fec0022d82,
title = "Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal–Organic Frameworks",
abstract = "Encapsulation of biomacromolecules in metal–organic frameworks (MOFs) can preserve biological functionality in harsh environments. Despite the success of this approach, termed biomimietic mineralization, limited consideration has been given to the chemistry of the MOF coating. Here we show that enzymes encapsulated within hydrophilic MAF-7 or ZIF-90 retain enzymatic activity upon encapsulation and when exposed to high temperatures, denaturing or proteolytic agents, and organic solvents, whereas hydrophobic ZIF-8 affords inactive catalase and negligible protection to urease.",
keywords = "MOFs, biomineralization, Enzyme immobilization, encapsulation",
author = "Weibin Liang and Huoshu Xu and Francesco Carraro and Maddigan, {Natasha K.} and Qiaowei Li and Bell, {Stephen G.} and Huang, {David M.} and Andrew Tarzia and Solomon, {Marcello B.} and Heinz Amenitsch and Lisa Vaccari and Sumby, {Christopher J.} and Paolo Falcaro and Doonan, {Christian J.}",
year = "2019",
month = "1",
day = "12",
doi = "10.1021/jacs.8b10302",
language = "English",
volume = "141",
pages = "2348--2355",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "6",

}

TY - JOUR

T1 - Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal–Organic Frameworks

AU - Liang, Weibin

AU - Xu, Huoshu

AU - Carraro, Francesco

AU - Maddigan, Natasha K.

AU - Li, Qiaowei

AU - Bell, Stephen G.

AU - Huang, David M.

AU - Tarzia, Andrew

AU - Solomon, Marcello B.

AU - Amenitsch, Heinz

AU - Vaccari, Lisa

AU - Sumby, Christopher J.

AU - Falcaro, Paolo

AU - Doonan, Christian J.

PY - 2019/1/12

Y1 - 2019/1/12

N2 - Encapsulation of biomacromolecules in metal–organic frameworks (MOFs) can preserve biological functionality in harsh environments. Despite the success of this approach, termed biomimietic mineralization, limited consideration has been given to the chemistry of the MOF coating. Here we show that enzymes encapsulated within hydrophilic MAF-7 or ZIF-90 retain enzymatic activity upon encapsulation and when exposed to high temperatures, denaturing or proteolytic agents, and organic solvents, whereas hydrophobic ZIF-8 affords inactive catalase and negligible protection to urease.

AB - Encapsulation of biomacromolecules in metal–organic frameworks (MOFs) can preserve biological functionality in harsh environments. Despite the success of this approach, termed biomimietic mineralization, limited consideration has been given to the chemistry of the MOF coating. Here we show that enzymes encapsulated within hydrophilic MAF-7 or ZIF-90 retain enzymatic activity upon encapsulation and when exposed to high temperatures, denaturing or proteolytic agents, and organic solvents, whereas hydrophobic ZIF-8 affords inactive catalase and negligible protection to urease.

KW - MOFs

KW - biomineralization

KW - Enzyme immobilization

KW - encapsulation

UR - http://www.scopus.com/inward/record.url?scp=85061255882&partnerID=8YFLogxK

U2 - 10.1021/jacs.8b10302

DO - 10.1021/jacs.8b10302

M3 - Article

VL - 141

SP - 2348

EP - 2355

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 6

ER -