Electromechanical properties of Ce-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics

Raziye Hayati*, Mohammad Ali Bahrevar, Yadolah Ganjkhanlou, Virginia Rojas, Jurij Koruza

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Lead-free piezoceramics based on the (Ba, Ca)(Zr, Ti)O3 (BCZT) system exhibit excellent electromechanical properties for low-temperature actuation applications, but suffer from relatively high processing temperatures. Here we demonstrate an approach for the reduction of the sintering temperature and simultaneous increase of the electromechanical strain response of (Ba, Ca)(Zr, Ti)O3 piezoceramics by aliovalent doping with Ce. The samples were prepared by solid state synthesis and their crystallographic structure, dielectric, ferroelectric, and electromechanical properties were investigated. The highest d*33 value of 1189 pm/V was obtained for the sample with 0.05 mol% Ce, substituted on the A-site of the perovskite lattice. The results indicate a large potential of these materials for off-resonance piezoelectric actuators.

Original languageEnglish
Pages (from-to)186-195
Number of pages10
JournalJournal of Advanced Ceramics
Issue number2
Publication statusPublished - 1 Jun 2019


  • (Ba,Ca)(Zr,Ti)O (BCZT)
  • actuator
  • cerium
  • lead-free piezoceramic

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites


Dive into the research topics of 'Electromechanical properties of Ce-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics'. Together they form a unique fingerprint.

Cite this